Modification of hydrothermally synthesized α-Fe2O3 nanorods with g-C3N4 prepared from various precursors as photoanodes for hydrogen production†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-07-26 DOI:10.1039/D3NJ05421G
Muhammad Ibadurrohman, Afaf Qurrotu Ainin, Fakhri Zinul Alam, Nadia Mumtazah, Slamet, Alfian Ferdiansyah Madsuha, Reza Miftahul Ulum and Bonavian Hasiholan
{"title":"Modification of hydrothermally synthesized α-Fe2O3 nanorods with g-C3N4 prepared from various precursors as photoanodes for hydrogen production†","authors":"Muhammad Ibadurrohman, Afaf Qurrotu Ainin, Fakhri Zinul Alam, Nadia Mumtazah, Slamet, Alfian Ferdiansyah Madsuha, Reza Miftahul Ulum and Bonavian Hasiholan","doi":"10.1039/D3NJ05421G","DOIUrl":null,"url":null,"abstract":"<p >This report addresses the synthesis, characterisation, and photoelectrochemical performances of α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanorods decorated with g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. Photoanode composites were fabricated in a two-step procedure in which fluorine-doped tin oxide (FTO) glass was coated with α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanorods <em>via</em> a hydrothermal method, followed by incorporation of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small><em>via</em> a wet-impregnation method. In particular, the study investigates the effects of precursors of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> (urea, dicyandiamide, and melamine) on the photoelectrochemical properties of the prepared α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> films. The films were thoroughly analysed by means of X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy, and UV-vis spectrometry. The highest photoelectrochemical output of the nanorod composite films was achieved with the use of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> synthesized from urea, generating 15.3 μA cm<small><sup>−2</sup></small> of photocurrent density as a result of better charge transfer driven by the formation of a semiconductor heterojunction. This is a staggering 12-fold improvement compared to the unmodified hematite nanorods which managed to only produce 1.2 μA cm<small><sup>−2</sup></small> of photocurrent density. The merits of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> prepared from urea as the best semiconductor couple for α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> are driven by its unique crystallinity and morphology with significantly larger surface area than g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> prepared from other precursors. The addition of glycerol as a sacrificial agent further improves the photocurrent to <em>ca.</em> 24 μA cm<small><sup>−2</sup></small>. The findings in this study show the potential of α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites for sustainable photoelectrochemical hydrogen production.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d3nj05421g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This report addresses the synthesis, characterisation, and photoelectrochemical performances of α-Fe2O3 nanorods decorated with g-C3N4. Photoanode composites were fabricated in a two-step procedure in which fluorine-doped tin oxide (FTO) glass was coated with α-Fe2O3 nanorods via a hydrothermal method, followed by incorporation of g-C3N4via a wet-impregnation method. In particular, the study investigates the effects of precursors of g-C3N4 (urea, dicyandiamide, and melamine) on the photoelectrochemical properties of the prepared α-Fe2O3/g-C3N4 films. The films were thoroughly analysed by means of X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy, and UV-vis spectrometry. The highest photoelectrochemical output of the nanorod composite films was achieved with the use of g-C3N4 synthesized from urea, generating 15.3 μA cm−2 of photocurrent density as a result of better charge transfer driven by the formation of a semiconductor heterojunction. This is a staggering 12-fold improvement compared to the unmodified hematite nanorods which managed to only produce 1.2 μA cm−2 of photocurrent density. The merits of g-C3N4 prepared from urea as the best semiconductor couple for α-Fe2O3 are driven by its unique crystallinity and morphology with significantly larger surface area than g-C3N4 prepared from other precursors. The addition of glycerol as a sacrificial agent further improves the photocurrent to ca. 24 μA cm−2. The findings in this study show the potential of α-Fe2O3/g-C3N4 composites for sustainable photoelectrochemical hydrogen production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用各种前驱体制备的 g-C3N4 对水热合成的 α-Fe2O3 纳米棒进行改性,将其用作制氢的光阳极
本报告探讨了用 g-C3N4 装饰的 α-Fe2O3 纳米棒的合成、表征和光电化学性能。光阳极复合材料的制造分两步进行,首先通过水热法在α-Fe2O3 纳米棒上涂覆氟掺杂氧化锡(FTO)玻璃,然后通过湿浸渍法加入 g-C3N4。本研究特别探讨了 g-C3N4 前体(尿素、双氰胺、三聚氰胺)对 α-Fe2O3/g-C3N4 薄膜光电化学特性的影响。通过 X 射线衍射仪 (XRD)、场发射扫描电子显微镜 (FE-SEM)、傅立叶变换红外光谱 (FTIR) 和紫外-可见光谱法对薄膜进行了全面分析。使用由尿素合成的 g-C3N4 时,纳米棒复合薄膜的光电化学输出最高,可产生 15.3 μA cm-2 的光电流密度,这是由于半导体异质结的形成推动了更好的电荷转移。与未经改性的赤铁矿纳米棒相比,光电流密度仅为 1.2 μA cm-2,而改性赤铁矿纳米棒的光电流密度则提高了 12 倍。以尿素为原料制备的 g-C3N4 是 α-Fe2O3 的最佳半导体偶联物,其优点在于其独特的结晶性和形态,表面积明显大于以其他前驱体制备的 g-C3N4。添加甘油作为牺牲剂可进一步将光电流提高到近 24 μA cm-2。本研究的结果表明,α-Fe2O3/g-C3N4 复合材料具有可持续光电化学制氢的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Supramolecular assembly of phenanthrene-DNA conjugates into light-harvesting nanospheres. Back cover Back cover Exploring supramolecular architectures in Mn(iii) two-compartment o-vanhd Schiff base complexes: insights from apical aqua ligands and bond valence sum analysis† A fluorescent biosensor based on boronic acid functionalized carbon dots for identification and sensitive detection of Gram-positive bacteria†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1