A Comprehensive Guide to Combining R and Python code for Data Science, Machine Learning and Reinforcement Learning

Alejandro L. García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández
{"title":"A Comprehensive Guide to Combining R and Python code for Data Science, Machine Learning and Reinforcement Learning","authors":"Alejandro L. García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández","doi":"arxiv-2407.14695","DOIUrl":null,"url":null,"abstract":"Python has gained widespread popularity in the fields of machine learning,\nartificial intelligence, and data engineering due to its effectiveness and\nextensive libraries. R, on its side, remains a dominant language for\nstatistical analysis and visualization. However, certain libraries have become\noutdated, limiting their functionality and performance. Users can use Python's\nadvanced machine learning and AI capabilities alongside R's robust statistical\npackages by combining these two programming languages. This paper explores\nusing R's reticulate package to call Python from R, providing practical\nexamples and highlighting scenarios where this integration enhances\nproductivity and analytical capabilities. With a few hello-world code snippets,\nwe demonstrate how to run Python's scikit-learn, pytorch and OpenAI gym\nlibraries for building Machine Learning, Deep Learning, and Reinforcement\nLearning projects easily.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Python has gained widespread popularity in the fields of machine learning, artificial intelligence, and data engineering due to its effectiveness and extensive libraries. R, on its side, remains a dominant language for statistical analysis and visualization. However, certain libraries have become outdated, limiting their functionality and performance. Users can use Python's advanced machine learning and AI capabilities alongside R's robust statistical packages by combining these two programming languages. This paper explores using R's reticulate package to call Python from R, providing practical examples and highlighting scenarios where this integration enhances productivity and analytical capabilities. With a few hello-world code snippets, we demonstrate how to run Python's scikit-learn, pytorch and OpenAI gym libraries for building Machine Learning, Deep Learning, and Reinforcement Learning projects easily.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合 R 和 Python 代码进行数据科学、机器学习和强化学习的综合指南
Python 因其高效和丰富的库而在机器学习、人工智能和数据工程领域广受欢迎。R 则仍然是统计分析和可视化的主流语言。然而,某些库已经过时,限制了其功能和性能。用户可以通过将 Python 和 R 这两种编程语言结合起来,在使用 R 的强大统计软件包的同时,使用 Python 先进的机器学习和人工智能功能。本文探讨了如何使用 R 的 reticulate 包从 R 中调用 Python,并提供了实际示例,重点介绍了这种集成可以提高生产率和分析能力的应用场景。我们将通过一些hello-world代码片段,演示如何运行Python的scikit-learn、pytorch和OpenAI gymlibraries,轻松构建机器学习、深度学习和强化学习项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Consistency and Program Transformations No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax Towards Quantum Multiparty Session Types The Incredible Shrinking Context... in a decompiler near you Scheme Pearl: Quantum Continuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1