Mitigating oxygen reduction reaction barriers: An in-depth first-principles exploration of high-entropy alloy as catalysts

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-07-20 DOI:10.1016/j.elecom.2024.107782
Ming-Yi Chen , Ngoc Thanh Thuy Tran , Wen-Dung Hsu
{"title":"Mitigating oxygen reduction reaction barriers: An in-depth first-principles exploration of high-entropy alloy as catalysts","authors":"Ming-Yi Chen ,&nbsp;Ngoc Thanh Thuy Tran ,&nbsp;Wen-Dung Hsu","doi":"10.1016/j.elecom.2024.107782","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effectiveness of high-entropy alloys (HEAs) as catalysts for reducing the energy barrier of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Four HEAs—IrPdPtRh, CoCrFeNi, NbMoTaW, and TiZrNbTa—are analyzed as potential catalysts. This superiority arises from the shift in the overall d-band center position towards negative energy in HEAs. The study suggests that an increased standard deviation of atomic valences within HEAs correlates positively with improved ORR efficiency, indicating it as a potential design indicator for cost-effective catalysts. Moreover, predictions of valence variations based on differences in electronegativity between individual elements are proposed. Additionally, the research highlights that additional surface adsorption of Pt on HEAs would further enhance ORR activity.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107782"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001255/pdfft?md5=248509447dc76ae79b535d41868a354a&pid=1-s2.0-S1388248124001255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001255","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effectiveness of high-entropy alloys (HEAs) as catalysts for reducing the energy barrier of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Four HEAs—IrPdPtRh, CoCrFeNi, NbMoTaW, and TiZrNbTa—are analyzed as potential catalysts. This superiority arises from the shift in the overall d-band center position towards negative energy in HEAs. The study suggests that an increased standard deviation of atomic valences within HEAs correlates positively with improved ORR efficiency, indicating it as a potential design indicator for cost-effective catalysts. Moreover, predictions of valence variations based on differences in electronegativity between individual elements are proposed. Additionally, the research highlights that additional surface adsorption of Pt on HEAs would further enhance ORR activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减轻氧还原反应障碍:高熵合金催化剂的深入第一原理探索
本研究探讨了高熵合金 (HEA) 作为催化剂降低质子交换膜燃料电池 (PEMFC) 中氧还原反应 (ORR) 能量障碍的有效性。对四种高熵合金--铱钯铂铬、钴铬铁镍、铌钼钽钨和钛锌锆铌钽--作为潜在催化剂进行了分析。这种优越性源于 HEA 中整个 d 波段中心位置向负能量的转移。研究表明,HEAs 中原子价标准偏差的增加与 ORR 效率的提高呈正相关,这表明它是具有成本效益的催化剂的潜在设计指标。此外,还提出了基于单个元素之间电负性差异的化合价变化预测。此外,研究还强调,在 HEA 上增加铂的表面吸附将进一步提高 ORR 活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1