{"title":"A Q-learning-based biology migration algorithm for energy-saving flexible job shop scheduling with speed adjustable machines and transporters","authors":"Tianhua Jiang, Lu Liu, Huiqi Zhu","doi":"10.1016/j.swevo.2024.101655","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the increasing demand for green manufacturing, energy-saving scheduling problems have garnered significant attention. These problems aim to reduce energy consumption at the production system level within workshops. To simulate a realistic production environment, this study addresses an energy-saving flexible job shop scheduling problem that considers two types of speed-adjustable resources, namely machines and transporters. The optimization objective is to minimize the comprehensive energy consumption of the workshop. A novel mathematical model is initially constructed based on the specific characteristics of the problem at hand. Given its NP-hard nature, a new Q-learning-based biology migration algorithm (QBMA) is proposed, which encompasses diverse search strategies and employs a Q-learning algorithm to dynamically select search strategies, thereby preventing blind search during the evolutionary process. The experimental results of our study demonstrate the promising efficacy of QBMA in effectively addressing the aforementioned problem, while also highlighting the positive impact of considering resources with adjustable speed.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101655"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001937","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the increasing demand for green manufacturing, energy-saving scheduling problems have garnered significant attention. These problems aim to reduce energy consumption at the production system level within workshops. To simulate a realistic production environment, this study addresses an energy-saving flexible job shop scheduling problem that considers two types of speed-adjustable resources, namely machines and transporters. The optimization objective is to minimize the comprehensive energy consumption of the workshop. A novel mathematical model is initially constructed based on the specific characteristics of the problem at hand. Given its NP-hard nature, a new Q-learning-based biology migration algorithm (QBMA) is proposed, which encompasses diverse search strategies and employs a Q-learning algorithm to dynamically select search strategies, thereby preventing blind search during the evolutionary process. The experimental results of our study demonstrate the promising efficacy of QBMA in effectively addressing the aforementioned problem, while also highlighting the positive impact of considering resources with adjustable speed.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.