Formulating approximation error as noise in surrogate-assisted multi-objective evolutionary algorithm

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-07-24 DOI:10.1016/j.swevo.2024.101666
Nan Zheng , Handing Wang , Jialin Liu
{"title":"Formulating approximation error as noise in surrogate-assisted multi-objective evolutionary algorithm","authors":"Nan Zheng ,&nbsp;Handing Wang ,&nbsp;Jialin Liu","doi":"10.1016/j.swevo.2024.101666","DOIUrl":null,"url":null,"abstract":"<div><p>Many real multi-objective optimization problems with 20-50 decision variables often have only a small number of function evaluations available, because of their heavy time/money burden. Therefore, surrogate models are often utilized as alternatives for expensive function evaluations. However, the approximation error of the surrogate model is inevitable compared to the real function evaluation. The approximation error has a similar impact on the algorithm as noise, i.e., different optimization stages suffer from various impacts. Therefore, the current optimization stage can be indirectly detected via measuring the impact of the noise formulated by the approximation error. In addition, the rising dimension of the search space leads to an increase in the approximation errors of the surrogate models, which poses a huge challenge for existing surrogate-assisted multi-objective evolutionary algorithms. In this work, we propose a stage-adaptive surrogate-assisted multi-objective evolutionary algorithm to solve the medium-scale optimization problems. In the proposed algorithm, the ensemble model consisting of the latest and historical models is used as the surrogate model, on the basis of which a set of potential candidates can be discovered. Then, a stage-adaptive infill sampling strategy selects the most suitable sampling strategy by analyzing the demand of the current optimization stage on convergence, diversity, model accuracy to sample from the candidates. As for the current optimization stage, it is detected by a noise impact indicator, where the approximation errors of surrogate models are formulated as noise. The experimental results on a series of medium-scale expensive test problems demonstrate the superiority of the proposed algorithm over six state-of-the-art compared algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101666"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002049","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many real multi-objective optimization problems with 20-50 decision variables often have only a small number of function evaluations available, because of their heavy time/money burden. Therefore, surrogate models are often utilized as alternatives for expensive function evaluations. However, the approximation error of the surrogate model is inevitable compared to the real function evaluation. The approximation error has a similar impact on the algorithm as noise, i.e., different optimization stages suffer from various impacts. Therefore, the current optimization stage can be indirectly detected via measuring the impact of the noise formulated by the approximation error. In addition, the rising dimension of the search space leads to an increase in the approximation errors of the surrogate models, which poses a huge challenge for existing surrogate-assisted multi-objective evolutionary algorithms. In this work, we propose a stage-adaptive surrogate-assisted multi-objective evolutionary algorithm to solve the medium-scale optimization problems. In the proposed algorithm, the ensemble model consisting of the latest and historical models is used as the surrogate model, on the basis of which a set of potential candidates can be discovered. Then, a stage-adaptive infill sampling strategy selects the most suitable sampling strategy by analyzing the demand of the current optimization stage on convergence, diversity, model accuracy to sample from the candidates. As for the current optimization stage, it is detected by a noise impact indicator, where the approximation errors of surrogate models are formulated as noise. The experimental results on a series of medium-scale expensive test problems demonstrate the superiority of the proposed algorithm over six state-of-the-art compared algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将近似误差表述为代理辅助多目标进化算法中的噪声
许多包含 20-50 个决策变量的实际多目标优化问题,由于时间/金钱负担沉重,往往只有少量的函数评估可用。因此,代用模型常常被用来替代昂贵的函数评估。然而,与实际函数评估相比,代用模型的近似误差是不可避免的。近似误差对算法的影响类似于噪声,即不同的优化阶段会受到不同的影响。因此,可以通过测量由近似误差形成的噪声的影响来间接检测当前的优化阶段。此外,搜索空间维度的增加导致代用模型的近似误差增大,这对现有的代用辅助多目标进化算法提出了巨大挑战。在这项工作中,我们提出了一种阶段自适应的代型辅助多目标进化算法来解决中等规模的优化问题。在所提出的算法中,由最新模型和历史模型组成的集合模型被用作代用模型,在此基础上可以发现一组潜在的候选模型。然后,阶段自适应填充采样策略通过分析当前优化阶段对收敛性、多样性、模型精度的需求,选择最合适的采样策略,从候选模型中进行采样。至于当前优化阶段,则通过噪声影响指标来检测,将代用模型的近似误差作为噪声。在一系列中等规模的昂贵测试问题上的实验结果表明,所提出的算法优于六种最先进的比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
An ensemble reinforcement learning-assisted deep learning framework for enhanced lung cancer diagnosis Multi-population coevolutionary algorithm for a green multi-objective flexible job shop scheduling problem with automated guided vehicles and variable processing speed constraints A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm A collaborative-learning multi-agent reinforcement learning method for distributed hybrid flow shop scheduling problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1