{"title":"Dispersal and connectivity modelling simulations for invertebrate larvae passing through the Strait of Gibraltar","authors":"Rita F T Pires, Álvaro Peliz, Antonina dos Santos","doi":"10.1093/icesjms/fsae098","DOIUrl":null,"url":null,"abstract":"The link between the northeastern Atlantic and Mediterranean Sea created by the Strait of Gibraltar and the adjacent Iberian and Moroccan coasts marks remarkable transition areas between distinct environments that harbour a diverse mixture of species. The area is interesting regarding marine connectivity and the transport of pelagic invertebrate larvae, crucial knowledge to manage over-exploited populations, and minimize the impacts of climate change and anthropogenic activities. Biophysical models were developed, combining oceanic and particle-tracking Lagrangian simulations with in situ zooplankton distribution data. The conditions driving the larval exchange between the sub-basins and the connectivity throughout the region were explored, using crustacean decapod larvae as biological references. The potential exchange between both sub-basins was confirmed, although specific larval traits revealed contrasting scenarios. The simulations showed that slope-dwelling and mesopelagic larvae have advantage when crossing from the Alboran into the Atlantic, in comparison with shelf-dwelling and epipelagic larvae. Transport pathways and retention areas were identified, and passive drifts were shown to increase the dispersal range of the simulations. The spatial origin of the larval release, larval duration, vertical distribution, and the interaction of larvae with the oceanic features are presented as the main factors impacting the effective larval input into the Atlantic or Mediterranean basins.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"3 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsae098","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The link between the northeastern Atlantic and Mediterranean Sea created by the Strait of Gibraltar and the adjacent Iberian and Moroccan coasts marks remarkable transition areas between distinct environments that harbour a diverse mixture of species. The area is interesting regarding marine connectivity and the transport of pelagic invertebrate larvae, crucial knowledge to manage over-exploited populations, and minimize the impacts of climate change and anthropogenic activities. Biophysical models were developed, combining oceanic and particle-tracking Lagrangian simulations with in situ zooplankton distribution data. The conditions driving the larval exchange between the sub-basins and the connectivity throughout the region were explored, using crustacean decapod larvae as biological references. The potential exchange between both sub-basins was confirmed, although specific larval traits revealed contrasting scenarios. The simulations showed that slope-dwelling and mesopelagic larvae have advantage when crossing from the Alboran into the Atlantic, in comparison with shelf-dwelling and epipelagic larvae. Transport pathways and retention areas were identified, and passive drifts were shown to increase the dispersal range of the simulations. The spatial origin of the larval release, larval duration, vertical distribution, and the interaction of larvae with the oceanic features are presented as the main factors impacting the effective larval input into the Atlantic or Mediterranean basins.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.