Using Multimodal Data Collection System as a Research Tool in the Major Depressive Disorder Analysis: a cross-sectional study protocol

Hongbo Li, Yifu Ji, Lingxiang Xu, Jiaoyun Yang, Yang Du, Min Hu, Ning An
{"title":"Using Multimodal Data Collection System as a Research Tool in the Major Depressive Disorder Analysis: a cross-sectional study protocol","authors":"Hongbo Li, Yifu Ji, Lingxiang Xu, Jiaoyun Yang, Yang Du, Min Hu, Ning An","doi":"10.1101/2024.07.21.24310061","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction Previous studies have established that depressive syndromes can be detected using machine learning methods, with multimodal data being essential. Multimodal data facilitates the extraction of characteristics such as gaze tracking, a reliable depression indicator. Our study employs high-quality video and other multimodal data from patients diagnosed with depression. Our study uses a multimodal data collection system (MDC) to understand the complex indicators of depression.\nObjective This paper outlines our protocol for deploying a multimodal data collection system within an In-Person Clinical Assessment environment. The system gathers high-definition videos, real-time vital signs, and voice recordings for future extraction of critical information such as eye gaze patterns. We aim to scale our model to provide portable depression risk analyses, facilitating timely intervention and encouraging patients to seek professional assistance.\nMethods and Analysis We have conducted sessions with 70 participants diagnosed with depression. Each participant undergoes DSM-5 interviews and engages with our multimodal data collection system. Participants respond to five on-screen scales while being recorded. To our knowledge, no other protocol has combined multimodal data collection and various stimuli in depression data collection.","PeriodicalId":501388,"journal":{"name":"medRxiv - Psychiatry and Clinical Psychology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Psychiatry and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.21.24310061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Introduction Previous studies have established that depressive syndromes can be detected using machine learning methods, with multimodal data being essential. Multimodal data facilitates the extraction of characteristics such as gaze tracking, a reliable depression indicator. Our study employs high-quality video and other multimodal data from patients diagnosed with depression. Our study uses a multimodal data collection system (MDC) to understand the complex indicators of depression. Objective This paper outlines our protocol for deploying a multimodal data collection system within an In-Person Clinical Assessment environment. The system gathers high-definition videos, real-time vital signs, and voice recordings for future extraction of critical information such as eye gaze patterns. We aim to scale our model to provide portable depression risk analyses, facilitating timely intervention and encouraging patients to seek professional assistance. Methods and Analysis We have conducted sessions with 70 participants diagnosed with depression. Each participant undergoes DSM-5 interviews and engages with our multimodal data collection system. Participants respond to five on-screen scales while being recorded. To our knowledge, no other protocol has combined multimodal data collection and various stimuli in depression data collection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在重度抑郁障碍分析中使用多模式数据收集系统作为研究工具:横断面研究方案
ABSTRACT 引言 以前的研究已经证实,抑郁综合征可以通过机器学习方法检测出来,而多模态数据是必不可少的。多模态数据有助于提取凝视跟踪等特征,而凝视跟踪是一种可靠的抑郁指标。我们的研究采用了确诊为抑郁症患者的高质量视频和其他多模态数据。本文概述了我们在亲自临床评估环境中部署多模态数据收集系统的方案。该系统收集高清视频、实时生命体征和语音记录,以便将来提取眼球注视模式等关键信息。我们的目标是扩大我们的模型,提供便携式抑郁风险分析,促进及时干预,鼓励患者寻求专业帮助。每位参与者都接受了 DSM-5 访谈,并使用了我们的多模态数据收集系统。参与者对屏幕上的五个量表做出反应,同时进行记录。据我们所知,在抑郁症数据收集方面,还没有其他方案将多模态数据收集和各种刺激结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Socio-medical Factors Associated with Neurodevelopmental Disorders on the Kenyan Coast Relationship between blood-cerebrospinal fluid barrier integrity, cardiometabolic and inflammatory factors in schizophrenia-spectrum disorders Whole-exome sequencing study of opioid dependence offers novel insights into the contributions of exome variants Mayo Normative Studies: regression-based normative data for remote self-administration of the Stricker Learning Span, Symbols Test and Mayo Test Drive Screening Battery Composite and validation in individuals with Mild Cognitive Impairment and dementia EEG frontal alpha asymmetry mediates the association between maternal and child internalizing symptoms in childhood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1