A new approach for attribute reduction from decision table based on intuitionistic fuzzy topology

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Soft Computing Pub Date : 2024-07-24 DOI:10.1007/s00500-024-09910-w
Tran Thanh Dai, Nguyen Long Giang, Vu Duc Thi, Tran Thi Ngan, Hoang Thi Minh Chau, Le Hoang Son
{"title":"A new approach for attribute reduction from decision table based on intuitionistic fuzzy topology","authors":"Tran Thanh Dai, Nguyen Long Giang, Vu Duc Thi, Tran Thi Ngan, Hoang Thi Minh Chau, Le Hoang Son","doi":"10.1007/s00500-024-09910-w","DOIUrl":null,"url":null,"abstract":"<p>Most of the current attribute reduction methods use the measure to define the reduct, such as the positive region of rough set theory (RS), information entropy, and distance. However, the size of the reduct based on the measures is still limited. To cope with this problem, we propose a new approach of attribute reduction based on using the intuitionistic fuzzy topology (IFT). Firstly, a new IFT structure based on the pre-order relation and the intuitionistic fuzzy base (IF-base) structure is introduced. Secondly, a new measure is proposed to evaluate the significance of the attribute based on the IF subbase. Finally, the new reduction algorithms based on the IF-base filter and filter-wrapper methods are presented. The theoretical and experimental results show that the proposed method is efficient in terms of size and accuracy of the reduct. Specifically, the reduct of the F_IFT algorithm has an average size of 50% smaller, and the FW_IFT algorithm has an average accuracy of 10% greater than those of the related algorithms. Significantly, the algorithm FW_IFT can very remove noisy attributes. The classification accuracy of the reduct is 15% higher than that of the original set of attributes.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"63 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09910-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the current attribute reduction methods use the measure to define the reduct, such as the positive region of rough set theory (RS), information entropy, and distance. However, the size of the reduct based on the measures is still limited. To cope with this problem, we propose a new approach of attribute reduction based on using the intuitionistic fuzzy topology (IFT). Firstly, a new IFT structure based on the pre-order relation and the intuitionistic fuzzy base (IF-base) structure is introduced. Secondly, a new measure is proposed to evaluate the significance of the attribute based on the IF subbase. Finally, the new reduction algorithms based on the IF-base filter and filter-wrapper methods are presented. The theoretical and experimental results show that the proposed method is efficient in terms of size and accuracy of the reduct. Specifically, the reduct of the F_IFT algorithm has an average size of 50% smaller, and the FW_IFT algorithm has an average accuracy of 10% greater than those of the related algorithms. Significantly, the algorithm FW_IFT can very remove noisy attributes. The classification accuracy of the reduct is 15% higher than that of the original set of attributes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直觉模糊拓扑的决策表属性还原新方法
目前的属性还原方法大多使用度量来定义还原,如粗糙集理论(RS)的正区域、信息熵和距离。然而,基于度量的还原规模仍然有限。针对这一问题,我们提出了一种基于直觉模糊拓扑(IFT)的属性还原新方法。首先,我们引入了一种基于前序关系和直觉模糊基(IF-base)结构的新 IFT 结构。其次,提出了一种新的度量方法,用于评估基于 IF 子基的属性的重要性。最后,介绍了基于 IF 基滤波器和滤波器包装器方法的新还原算法。理论和实验结果表明,所提出的方法在还原的规模和准确性方面都很有效。具体来说,与相关算法相比,F_IFT 算法的还原规模平均缩小了 50%,FW_IFT 算法的平均精度提高了 10%。值得注意的是,FW_IFT 算法可以很好地去除噪声属性。还原后的分类准确率比原始属性集的分类准确率高 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Computing
Soft Computing 工程技术-计算机:跨学科应用
CiteScore
8.10
自引率
9.80%
发文量
927
审稿时长
7.3 months
期刊介绍: Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems. Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.
期刊最新文献
Handwritten text recognition and information extraction from ancient manuscripts using deep convolutional and recurrent neural network Optimizing green solid transportation with carbon cap and trade: a multi-objective two-stage approach in a type-2 Pythagorean fuzzy context Production chain modeling based on learning flow stochastic petri nets Multi-population multi-strategy differential evolution algorithm with dynamic population size adjustment Dynamic parameter identification of modular robot manipulators based on hybrid optimization strategy: genetic algorithm and least squares method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1