Virtual brain twins for stimulation in epilepsy

Huifang E Wang, Borana Dollomaja, Jan Paul TRIEBKORN, Gian Marco Duma, Adam WILLIAMSON, Julia Makhalova, Jean-didier LEMARERECHAL, Fabrice BARTOLOMEI, Viktor Jirsa
{"title":"Virtual brain twins for stimulation in epilepsy","authors":"Huifang E Wang, Borana Dollomaja, Jan Paul TRIEBKORN, Gian Marco Duma, Adam WILLIAMSON, Julia Makhalova, Jean-didier LEMARERECHAL, Fabrice BARTOLOMEI, Viktor Jirsa","doi":"10.1101/2024.07.25.24310396","DOIUrl":null,"url":null,"abstract":"Estimating the epileptogenic zone network (EZN) is an important part of the diagnosis of drug-resistant focal epilepsy and plays a pivotal role in treatment and intervention. Virtual brain twins based on personalized whole brain modeling provides a formal method for personalized diagnosis by integrating patient-specific brain topography with structural connectivity from anatomical neuroimaging such as MRI and dynamic activity from functional recordings such as EEG and stereo-EEG (SEEG). Seizures demonstrate rich spatial and temporal features in functional recordings, which can be exploited to estimate the EZN. Stimulation-induced seizures can provide important and complementary information. In our modeling process, we consider invasive SEEG stimulation as the most practical current approach, and temporal interference (TI) stimulation as a potential future approach for non-invasive diagnosis and treatment. This paper offers a virtual brain twin framework for EZN diagnosis based on stimulation-induced seizures. This framework estimates the EZN and validated the results on synthetic data with ground-truth. It provides an important methodological and conceptual basis for a series of ongoing scientific studies and clinical usage, which are specified in this paper. This framework also provides the necessary step to go from invasive to non-invasive diagnosis and treatment of drug-resistant focal epilepsy.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.25.24310396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the epileptogenic zone network (EZN) is an important part of the diagnosis of drug-resistant focal epilepsy and plays a pivotal role in treatment and intervention. Virtual brain twins based on personalized whole brain modeling provides a formal method for personalized diagnosis by integrating patient-specific brain topography with structural connectivity from anatomical neuroimaging such as MRI and dynamic activity from functional recordings such as EEG and stereo-EEG (SEEG). Seizures demonstrate rich spatial and temporal features in functional recordings, which can be exploited to estimate the EZN. Stimulation-induced seizures can provide important and complementary information. In our modeling process, we consider invasive SEEG stimulation as the most practical current approach, and temporal interference (TI) stimulation as a potential future approach for non-invasive diagnosis and treatment. This paper offers a virtual brain twin framework for EZN diagnosis based on stimulation-induced seizures. This framework estimates the EZN and validated the results on synthetic data with ground-truth. It provides an important methodological and conceptual basis for a series of ongoing scientific studies and clinical usage, which are specified in this paper. This framework also provides the necessary step to go from invasive to non-invasive diagnosis and treatment of drug-resistant focal epilepsy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于刺激癫痫的虚拟大脑双胞胎
估计致痫区网络(EZN)是诊断耐药性局灶性癫痫的重要部分,在治疗和干预中起着关键作用。基于个性化全脑建模的虚拟大脑双胞胎提供了一种正式的个性化诊断方法,它将患者特定的大脑地形图与核磁共振成像(MRI)等解剖神经影像的结构连接以及脑电图(EEG)和立体脑电图(SEEG)等功能记录的动态活动整合在一起。癫痫发作在功能记录中显示出丰富的空间和时间特征,可用于估算 EZN。刺激诱发的癫痫发作可提供重要的补充信息。在建模过程中,我们将有创 SEEG 刺激视为当前最实用的方法,而将颞叶干扰(TI)刺激视为未来无创诊断和治疗的潜在方法。本文提供了一个基于刺激诱发癫痫发作的 EZN 诊断虚拟大脑孪生框架。该框架估算了 EZN,并在合成数据上验证了结果的真实性。它为一系列正在进行的科学研究和临床应用提供了重要的方法论和概念基础,本文将对此进行具体阐述。该框架还为耐药性局灶性癫痫的诊断和治疗提供了从有创到无创的必要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological markers of brain network connectivity and pain sensitivity distinguish low coping from high coping Veterans with persistent post-traumatic headache Association of Item-Level Responses to Cognitive Function Index with Tau Pathology and Hippocampal volume in The A4 Study EpiSemoLLM: A Fine-tuned Large Language Model for Epileptogenic Zone Localization Based on Seizure Semiology with a Performance Comparable to Epileptologists Selective effects of dopaminergic and noradrenergic degeneration on cognition in Parkinson's disease The Relationship Between Electrodermal Activity and Cardiac Troponin in Patients with Paroxysmal Sympathetic Hyperactivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1