Zixing Ye, Daifu Yu, Ruian Zhang, Fei Qin, Yiran Sun, Jie Huang, Zhanqi Zhou, He Tian, Gaorong Han, Zhaohui Ren, Gang Liu
{"title":"Regulating photocatalytic overall water splitting of ferroelectric heterostructures by size effect","authors":"Zixing Ye, Daifu Yu, Ruian Zhang, Fei Qin, Yiran Sun, Jie Huang, Zhanqi Zhou, He Tian, Gaorong Han, Zhaohui Ren, Gang Liu","doi":"10.1007/s12274-024-6819-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the past decade, ferroelectric materials have been intensively explored as promising photocatalysts. An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes, which is believed to arise from a spontaneous polarization. Understanding how polarization affects the photocatalytic performance is vital to design high-efficiency photocatalysts. In this work, we report a size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO<sub>3</sub>/PbTiO<sub>3</sub> nanoplate heterostructures for the first time. This was realized hydrothermally by controlling the thickness and thus spontaneous polarization strength of single-crystal and single-domain PbTiO<sub>3</sub> nanoplates, which served as the substrate for selective heteroepitaxial growth of SrTiO<sub>3</sub>. An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of the nanoplate increases from 30 to 107 nm. A combined experimental investigation revealed that the incompletely compensated depolarization filed is the dominated driving force for the photogenerated carrier separation within heterostructures, and its increase with the thickness of the nanoplates accounts for the enhancement of photocatalytic activity. Moreover, the concentration of oxygen vacancies for negative polarization compensation has been found to grow as the thickness of the nanoplates increases, which promotes oxygen evolution reaction and reduces the stoichiometric ratio of H<sub>2</sub>/O<sub>2</sub>. These findings may provide the opportunity to design and develop high-efficiency ferroelectric photocatalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"8000 - 8006"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6819-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decade, ferroelectric materials have been intensively explored as promising photocatalysts. An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes, which is believed to arise from a spontaneous polarization. Understanding how polarization affects the photocatalytic performance is vital to design high-efficiency photocatalysts. In this work, we report a size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO3/PbTiO3 nanoplate heterostructures for the first time. This was realized hydrothermally by controlling the thickness and thus spontaneous polarization strength of single-crystal and single-domain PbTiO3 nanoplates, which served as the substrate for selective heteroepitaxial growth of SrTiO3. An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of the nanoplate increases from 30 to 107 nm. A combined experimental investigation revealed that the incompletely compensated depolarization filed is the dominated driving force for the photogenerated carrier separation within heterostructures, and its increase with the thickness of the nanoplates accounts for the enhancement of photocatalytic activity. Moreover, the concentration of oxygen vacancies for negative polarization compensation has been found to grow as the thickness of the nanoplates increases, which promotes oxygen evolution reaction and reduces the stoichiometric ratio of H2/O2. These findings may provide the opportunity to design and develop high-efficiency ferroelectric photocatalysts.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.