{"title":"Neural Appearance Model for Cloth Rendering","authors":"G. Y. Soh, Z. Montazeri","doi":"10.1111/cgf.15156","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The realistic rendering of woven and knitted fabrics has posed significant challenges throughout many years. Previously, fiber-based micro-appearance models have achieved considerable success in attaining high levels of realism. However, rendering such models remains complex due to the intricate internal scatterings of hundreds of fibers within a yarn, requiring vast amounts of memory and time to render. In this paper, we introduce a new framework to capture aggregated appearance by tracing many light paths through the underlying fiber geometry. We then employ lightweight neural networks to accurately model the aggregated BSDF, which allows for the precise modeling of a diverse array of materials while offering substantial improvements in speed and reductions in memory. Furthermore, we introduce a novel importance sampling scheme to further speed up the rate of convergence. We validate the efficacy and versatility of our framework through comparisons with preceding fiber-based shading models as well as the most recent yarn-based model.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The realistic rendering of woven and knitted fabrics has posed significant challenges throughout many years. Previously, fiber-based micro-appearance models have achieved considerable success in attaining high levels of realism. However, rendering such models remains complex due to the intricate internal scatterings of hundreds of fibers within a yarn, requiring vast amounts of memory and time to render. In this paper, we introduce a new framework to capture aggregated appearance by tracing many light paths through the underlying fiber geometry. We then employ lightweight neural networks to accurately model the aggregated BSDF, which allows for the precise modeling of a diverse array of materials while offering substantial improvements in speed and reductions in memory. Furthermore, we introduce a novel importance sampling scheme to further speed up the rate of convergence. We validate the efficacy and versatility of our framework through comparisons with preceding fiber-based shading models as well as the most recent yarn-based model.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.