Jeffrey M. Albert, Hongxu Zhu, Tanujit Dey, Jiayang Sun, Wojbor A. Woyczynski, Gregory Powers, Meeyoung Min
{"title":"Spline linear mixed-effects models for causal mediation analysis with longitudinal data","authors":"Jeffrey M. Albert, Hongxu Zhu, Tanujit Dey, Jiayang Sun, Wojbor A. Woyczynski, Gregory Powers, Meeyoung Min","doi":"10.1111/anzs.12422","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Often, causal mediation analysis is of interest when both the mediator and the final outcome are repeatedly measured, but limited work has been done for this situation (as opposed to where only the mediator is repeatedly measured). Available methods are primarily based on parametric models and tend to be sensitive to model assumptions. This article presents semiparametric, continuous-time models to provide a flexible and robust approach to causal mediation analysis for longitudinal data, which allows these data to be unbalanced or irregular. Specifically, the method uses spline linear mixed-effects models for the mediator and for the final outcome, with a two-step approach to model-fitting in which a predicted mediator is used as a covariate in the final outcome model. The models allow flexible functions for both the mean and individual response functions for each outcome. We derive estimated natural direct and indirect effects as a function of time using an extended mediation formula and sequential ignorability assumption. In simulation studies, we compare properties of estimated direct and indirect effects, and a delta method estimate of the standard error of the latter, under alternative approaches for predicting the mediator. The approach is illustrated using harmonised data from two cohort studies to examine attention as a mediator of the effect of prenatal tobacco exposure on externalising behaviour in children.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 3","pages":"347-366"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12422","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Often, causal mediation analysis is of interest when both the mediator and the final outcome are repeatedly measured, but limited work has been done for this situation (as opposed to where only the mediator is repeatedly measured). Available methods are primarily based on parametric models and tend to be sensitive to model assumptions. This article presents semiparametric, continuous-time models to provide a flexible and robust approach to causal mediation analysis for longitudinal data, which allows these data to be unbalanced or irregular. Specifically, the method uses spline linear mixed-effects models for the mediator and for the final outcome, with a two-step approach to model-fitting in which a predicted mediator is used as a covariate in the final outcome model. The models allow flexible functions for both the mean and individual response functions for each outcome. We derive estimated natural direct and indirect effects as a function of time using an extended mediation formula and sequential ignorability assumption. In simulation studies, we compare properties of estimated direct and indirect effects, and a delta method estimate of the standard error of the latter, under alternative approaches for predicting the mediator. The approach is illustrated using harmonised data from two cohort studies to examine attention as a mediator of the effect of prenatal tobacco exposure on externalising behaviour in children.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.