{"title":"A multi-layer membrane filter made of potassium catalyst and three-way catalyst for a passive after-treatment system","authors":"Teerapat Suteerapongpun, Masaru Ogura, Katsunori Hanamura","doi":"10.1177/14680874241261106","DOIUrl":null,"url":null,"abstract":"A multi-layer membrane has been fabricated to integrate a Three-Way Catalyst (TWC) and Gasoline Particulate Filter (GPF) into one device, called a four-way catalytic converter. The top layer, made of nano-scale potassium catalyst particles, traps Particulate Matter (PM) with almost 100% filtration efficiency at all times and oxidizes PM (mostly soot) with a significantly reduced temperature of 476°C at the oxidation peak. Moreover, the bottom layer catalyst is comprised of sub-micro TWC particles to combine NO reduction and CO oxidation capabilities. The effective temperature range for the simultaneous removal of all pollutants was between 420°C–500°C.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"82 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241261106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-layer membrane has been fabricated to integrate a Three-Way Catalyst (TWC) and Gasoline Particulate Filter (GPF) into one device, called a four-way catalytic converter. The top layer, made of nano-scale potassium catalyst particles, traps Particulate Matter (PM) with almost 100% filtration efficiency at all times and oxidizes PM (mostly soot) with a significantly reduced temperature of 476°C at the oxidation peak. Moreover, the bottom layer catalyst is comprised of sub-micro TWC particles to combine NO reduction and CO oxidation capabilities. The effective temperature range for the simultaneous removal of all pollutants was between 420°C–500°C.