Effects of dual injection operations on combustion performances and particulate matter emissions in a spark ignition engine fuelled with second-generation biogasoline

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Engine Research Pub Date : 2024-07-24 DOI:10.1177/14680874241261128
Mohamed Mohamed, Xinyan Wang, Hua Zhao, Jonathan Hall
{"title":"Effects of dual injection operations on combustion performances and particulate matter emissions in a spark ignition engine fuelled with second-generation biogasoline","authors":"Mohamed Mohamed, Xinyan Wang, Hua Zhao, Jonathan Hall","doi":"10.1177/14680874241261128","DOIUrl":null,"url":null,"abstract":"The automotive industry must mitigate climate change by reducing vehicle carbon emissions and promoting sustainable transportation through technical solutions and innovations. Biofuels are seen as a solution to reduce CO<jats:sub>2</jats:sub> emissions, but they may affect fuel performance and emissions. Second-generation biogasoline mixed with ethanol has proven that it can be introduced as a drop-in fuel with the same performance and tailpipe emissions at the same level as fossil fuels. However, particulate matter (PM) emissions are significantly higher than fossil fuels. This study aims to experimentally investigate the effect of port and direct fuel injections on the PM emissions in a boosted spark ignition (SI) engine fuelled by Euro 6 standard biofuel with a 99 octane number blended with 20% ethanol compared to a fossil fuel baseline. The single-cylinder SI engine was equipped with two fuel injectors, a direct injector and a port fuel injector, and operated with externally boosted air. The split injection ratio was adjusted from 100% direct injection (DI) to 100% port fuel injection (PFI) to investigate the combustion characteristics and particulate emissions (PM) at different engine loads and speeds. The results indicate that by changing 100% DI to 80% PFI, PM emissions numbers between particle sizes of 23 and 1000 nm were dropped by 96.56% at a low load operation of 4.6 bar IMEP for the 99 RON E20 biogasoline and by 84% for the 95 RON E10 fossil fuel while maintaining the same indicated thermal efficiency and a similar level of other emissions. However, at a higher load above 10 bar IMEP, it was found that full DI operation reduced particulate numbers (PN) by 64% and 38% for 99 RON E20 biogasoline and 95 RON E10 fossil fuel at 20 bar IMEP, respectively, and enabled more stable operation at 3000 rpm with higher load operation regions.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"35 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241261128","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The automotive industry must mitigate climate change by reducing vehicle carbon emissions and promoting sustainable transportation through technical solutions and innovations. Biofuels are seen as a solution to reduce CO2 emissions, but they may affect fuel performance and emissions. Second-generation biogasoline mixed with ethanol has proven that it can be introduced as a drop-in fuel with the same performance and tailpipe emissions at the same level as fossil fuels. However, particulate matter (PM) emissions are significantly higher than fossil fuels. This study aims to experimentally investigate the effect of port and direct fuel injections on the PM emissions in a boosted spark ignition (SI) engine fuelled by Euro 6 standard biofuel with a 99 octane number blended with 20% ethanol compared to a fossil fuel baseline. The single-cylinder SI engine was equipped with two fuel injectors, a direct injector and a port fuel injector, and operated with externally boosted air. The split injection ratio was adjusted from 100% direct injection (DI) to 100% port fuel injection (PFI) to investigate the combustion characteristics and particulate emissions (PM) at different engine loads and speeds. The results indicate that by changing 100% DI to 80% PFI, PM emissions numbers between particle sizes of 23 and 1000 nm were dropped by 96.56% at a low load operation of 4.6 bar IMEP for the 99 RON E20 biogasoline and by 84% for the 95 RON E10 fossil fuel while maintaining the same indicated thermal efficiency and a similar level of other emissions. However, at a higher load above 10 bar IMEP, it was found that full DI operation reduced particulate numbers (PN) by 64% and 38% for 99 RON E20 biogasoline and 95 RON E10 fossil fuel at 20 bar IMEP, respectively, and enabled more stable operation at 3000 rpm with higher load operation regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双喷射操作对以第二代生物汽油为燃料的火花点火发动机的燃烧性能和颗粒物排放的影响
汽车行业必须通过技术解决方案和创新,减少汽车碳排放,促进可持续交通,从而减缓气候变化。生物燃料被视为减少二氧化碳排放的一种解决方案,但可能会影响燃料的性能和排放。事实证明,第二代生物汽油与乙醇混合后,可作为无须添加的燃料使用,其性能和尾气排放与化石燃料相同。然而,颗粒物(PM)排放量明显高于化石燃料。本研究的目的是通过实验研究端口喷射和直接喷射对增压火花点火(SI)发动机中颗粒物排放的影响,与化石燃料基线相比,该发动机使用的是辛烷值为 99、掺有 20% 乙醇的欧 6 标准生物燃料。单缸 SI 发动机配备了两个燃料喷射器(一个直接喷射器和一个端口燃料喷射器),使用外部增压空气运行。为了研究不同发动机负荷和转速下的燃烧特性和颗粒物排放(PM),将分体喷射比从 100% 直接喷射(DI)调整为 100% 端口喷射(PFI)。结果表明,将 100% DI 改为 80% PFI 后,在 4.6 巴 IMEP 的低负荷运行条件下,使用 99 RON E20 生物汽油时,粒径介于 23 纳米和 1000 纳米之间的 PM 排放量减少了 96.56%,使用 95 RON E10 化石燃料时减少了 84%,同时保持了相同的指示热效率和类似的其他排放水平。然而,在超过 10 巴 IMEP 的较高负荷下,全 DI 运行发现,在 20 巴 IMEP 下,99 RON E20 生物汽油和 95 RON E10 矿物燃料的颗粒数(PN)分别减少了 64% 和 38%,并在 3000 转/分钟的较高负荷运行区域实现了更稳定的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
期刊最新文献
Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine. Transient NOx emission modeling of a hydrogen-diesel engine using hybrid machine learning methods An efficient product design tool for aftertreatment system Computational investigation of a methanol compression ignition engine assisted by a glow plug A consistent model of the initiation, early expansion, and possible extinction of a spark-ignited flame kernel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1