Population Diversity Management of Swallow Swarm Optimization Algorithm for Fuzzy Classification Problem

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Pub Date : 2024-07-22 DOI:10.3103/S0005105524700110
I. A. Hodashinsky
{"title":"Population Diversity Management of Swallow Swarm Optimization Algorithm for Fuzzy Classification Problem","authors":"I. A. Hodashinsky","doi":"10.3103/S0005105524700110","DOIUrl":null,"url":null,"abstract":"<p>In swarm algorithms, the need to measure population diversity arises in various contexts, such as in the adaptation of algorithm parameters, preventing the premature convergence of the algorithm and stopping and restarting it. Measures of population diversity allow the phases of the algorithm, namely, diversification and intensification, to be controlled. The article experimentally investigated six measures of population diversity of the optimization of the swallow swarm algorithm when solving the problem of optimizing the parameters of the membership functions of fuzzy classifiers. The resulting classifiers were tested on publicly available data sets drawn from the KEEL repository.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"58 3","pages":"182 - 187"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105524700110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In swarm algorithms, the need to measure population diversity arises in various contexts, such as in the adaptation of algorithm parameters, preventing the premature convergence of the algorithm and stopping and restarting it. Measures of population diversity allow the phases of the algorithm, namely, diversification and intensification, to be controlled. The article experimentally investigated six measures of population diversity of the optimization of the swallow swarm algorithm when solving the problem of optimizing the parameters of the membership functions of fuzzy classifiers. The resulting classifiers were tested on publicly available data sets drawn from the KEEL repository.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于模糊分类问题的燕群优化算法的种群多样性管理
摘要 在蜂群算法中,需要在各种情况下测量种群多样性,如适应算法参数、防止算法过早收敛以及停止和重新启动算法。种群多样性的测量可以控制算法的阶段,即多样化和集约化。在解决模糊分类器成员函数参数优化问题时,文章对燕子群算法优化的六种种群多样性措施进行了实验研究。由此产生的分类器在 KEEL 数据库中的公开数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
期刊最新文献
On the Way to Machine Consciousness: Identification of Hidden System Properties of Material Objects Developing a Knowledge Base from Oncological Patients’ Neurosurgical Operations Data Event-Driven Process Methodology Notation for Information Processing Research Multicomponent English and Russian Terms Alignment in a Parallel Corpus Based on a SimAlign Package On Modeling the Information Activities of Modern Libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1