On the Nonbinary Version of the Causality Relation in the Intelligent Analysis of Oncological Data

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Pub Date : 2024-07-22 DOI:10.3103/S0005105524700146
M. I. Zabezhailo, M. A. Mikheyenkova, Yu. Yu. Trunin
{"title":"On the Nonbinary Version of the Causality Relation in the Intelligent Analysis of Oncological Data","authors":"M. I. Zabezhailo,&nbsp;M. A. Mikheyenkova,&nbsp;Yu. Yu. Trunin","doi":"10.3103/S0005105524700146","DOIUrl":null,"url":null,"abstract":"<p>The experience and specifics of the use of intelligent data analysis (IDA) in high-tech medical diagnostics are discussed. The current version of the IDA is a mathematical formalization of the so-called causal similarity heuristic by algebraic means. The main features and abilities of the developed approach are demonstrated in relation to the tasks of the diagnosis and treatment of certain types of human brain tumors. Some results characterizing the causality of the effect of pseudo-progression and tumor recurrence are presented. The potential and prospects of the developed approaches and diagnostic tools in the arsenal of modern evidence-based medicine are considered.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"58 3","pages":"200 - 207"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105524700146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The experience and specifics of the use of intelligent data analysis (IDA) in high-tech medical diagnostics are discussed. The current version of the IDA is a mathematical formalization of the so-called causal similarity heuristic by algebraic means. The main features and abilities of the developed approach are demonstrated in relation to the tasks of the diagnosis and treatment of certain types of human brain tumors. Some results characterizing the causality of the effect of pseudo-progression and tumor recurrence are presented. The potential and prospects of the developed approaches and diagnostic tools in the arsenal of modern evidence-based medicine are considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论肿瘤数据智能分析中因果关系的非二进制版本
摘要 讨论了在高科技医疗诊断中使用智能数据分析(IDA)的经验和具体情况。当前版本的智能数据分析是通过代数手段对所谓的因果相似性启发式进行数学形式化。针对某些类型的人类脑肿瘤的诊断和治疗任务,展示了所开发方法的主要特点和能力。介绍了一些表征假性进展和肿瘤复发影响因果关系的结果。研究还探讨了所开发的方法和诊断工具在现代循证医学中的潜力和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
期刊最新文献
On the Way to Machine Consciousness: Identification of Hidden System Properties of Material Objects Developing a Knowledge Base from Oncological Patients’ Neurosurgical Operations Data Event-Driven Process Methodology Notation for Information Processing Research Multicomponent English and Russian Terms Alignment in a Parallel Corpus Based on a SimAlign Package On Modeling the Information Activities of Modern Libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1