{"title":"Estimating the gain of increasing the ensemble size from analytical considerations","authors":"Bo Christiansen","doi":"10.1002/qj.4815","DOIUrl":null,"url":null,"abstract":"Model ensembles may provide estimates of uncertainties arising from unknown initial conditions and model deficiencies. Often, the ensemble mean is taken as the best estimate, and quantities such as the mean‐squared error between model mean and observations decrease with the number of ensemble members. But the ensemble size is often limited by available resources, and so some idea of how many ensemble members that are needed before the error has saturated would be advantageous. The behaviour with ensemble size is often estimated by producing subsamples from a large ensemble. But this strategy requires that this large ensemble is already available. Fortunately, in many situations, the dependence on ensemble size follows simple analytical relations when the quantity under interest (such as the mean‐squared error between ensemble mean and observations) is calculated over many grid points or time points. This holds both for ensemble means and the related sampling variance. Here, we present such relations and demonstrate how they can be used to estimate the gain of increasing the ensemble. Whereas previous work has mainly focused on the size of the model ensemble, we recognize that uncertainties in observations play a role. We therefore also study the effect of using the mean of an ensemble of reanalyses. We show how the analytical relations can be used to estimate the point where the gain of increasing the size of the model ensemble is dwarfed by the gain of increasing the number of reanalyses. We demonstrate these points using two climate model ensembles: a large multimodel ensemble and a large single‐model initial‐condition ensemble.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4815","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Model ensembles may provide estimates of uncertainties arising from unknown initial conditions and model deficiencies. Often, the ensemble mean is taken as the best estimate, and quantities such as the mean‐squared error between model mean and observations decrease with the number of ensemble members. But the ensemble size is often limited by available resources, and so some idea of how many ensemble members that are needed before the error has saturated would be advantageous. The behaviour with ensemble size is often estimated by producing subsamples from a large ensemble. But this strategy requires that this large ensemble is already available. Fortunately, in many situations, the dependence on ensemble size follows simple analytical relations when the quantity under interest (such as the mean‐squared error between ensemble mean and observations) is calculated over many grid points or time points. This holds both for ensemble means and the related sampling variance. Here, we present such relations and demonstrate how they can be used to estimate the gain of increasing the ensemble. Whereas previous work has mainly focused on the size of the model ensemble, we recognize that uncertainties in observations play a role. We therefore also study the effect of using the mean of an ensemble of reanalyses. We show how the analytical relations can be used to estimate the point where the gain of increasing the size of the model ensemble is dwarfed by the gain of increasing the number of reanalyses. We demonstrate these points using two climate model ensembles: a large multimodel ensemble and a large single‐model initial‐condition ensemble.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.