Differential biotransformation ability may alter fish biodiversity in polluted waters

Marco E Franco, Juliane Hollender, Kristin Schirmer
{"title":"Differential biotransformation ability may alter fish biodiversity in polluted waters","authors":"Marco E Franco, Juliane Hollender, Kristin Schirmer","doi":"10.1101/2024.07.26.605280","DOIUrl":null,"url":null,"abstract":"Divergence in the activity of biotransformation pathways could lead to species sensitivity differences to chemical stress. To explore this hypothesis, we evaluated the biotransformation capacity of five fish species that are representatives of Swiss biodiversity assemblages and that inhabit watercourses surrounded by different land use. We report important interspecific differences regarding the presence and activity of major biotransformation pathways, such as the invasive pumpinkseed (Lepomis gibbosus) displaying micropollutant clearance between 3- and 7-fold higher than native species (e.g. Salmo trutta, Squalius cephalus) collected in the same areas. These differences were exacerbated by urban and agricultural influence, which increased biotransformation potential at the enzyme level by as much as 11-fold and micropollutant clearance by approximately 2-fold compared to biotransformation levels in areas with minimal human influence. In the context of the chemical defensome, we argue that fish with low biotransformation activity carry a greater burden on chemical stress, making them less likely to cope with additional stressors and sustain their population in competition with species with a higher biotransformation capacity.","PeriodicalId":501518,"journal":{"name":"bioRxiv - Pharmacology and Toxicology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Pharmacology and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.26.605280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Divergence in the activity of biotransformation pathways could lead to species sensitivity differences to chemical stress. To explore this hypothesis, we evaluated the biotransformation capacity of five fish species that are representatives of Swiss biodiversity assemblages and that inhabit watercourses surrounded by different land use. We report important interspecific differences regarding the presence and activity of major biotransformation pathways, such as the invasive pumpinkseed (Lepomis gibbosus) displaying micropollutant clearance between 3- and 7-fold higher than native species (e.g. Salmo trutta, Squalius cephalus) collected in the same areas. These differences were exacerbated by urban and agricultural influence, which increased biotransformation potential at the enzyme level by as much as 11-fold and micropollutant clearance by approximately 2-fold compared to biotransformation levels in areas with minimal human influence. In the context of the chemical defensome, we argue that fish with low biotransformation activity carry a greater burden on chemical stress, making them less likely to cope with additional stressors and sustain their population in competition with species with a higher biotransformation capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同的生物转化能力可能会改变受污染水域的鱼类生物多样性
生物转化途径活性的差异可能导致物种对化学压力的敏感性不同。为了探索这一假设,我们评估了五种鱼类的生物转化能力,这五种鱼类是瑞士生物多样性组合的代表,它们栖息在被不同土地利用方式包围的河道中。我们报告了在主要生物转化途径的存在和活性方面存在的重要种间差异,例如,入侵的泵inkseed(Lepomis gibbosus)对微污染物的清除率比在同一地区采集的本地物种(如 Salmo trutta、Squalius cephalus)高出 3 到 7 倍。城市和农业影响加剧了这些差异,与人类影响最小地区的生物转化水平相比,酶水平的生物转化潜力提高了 11 倍,微污染物清除率提高了约 2 倍。在化学防御系统的背景下,我们认为生物转化活性低的鱼类承受的化学压力更大,使它们不太可能应对更多的压力,并在与生物转化能力更强的物种竞争中维持其种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quinoline synergy and reduced use: a study of pharmacodynamic interactions In vitro and in vivo evaluation of Ulva lactuca for wound healing In Vitro Evaluation of Anti-Inflammatory, Anti-Plaque Efficacy, and Biocompatibility of Norway Spruce (Picea abies) Resin Extract for Oral Care Applications Daphnids Can Safeguard the Use of Alternative Bioassays to the Acute Fish Toxicity Test: A Focus on Neurotoxicity Qing-Luo-Yin-induced SIRT1 inhibition contributes to the immune improvement of adjuvant-induced arthritis rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1