J. D. Haslbauer, C. Wiegand, B. Hamelin, V. S. Ivanova, T. Menter, S. Savic Prince, A. Tzankov, K. D. Mertz
{"title":"Two cases demonstrate an association between Tropheryma whipplei and pulmonary marginal zone lymphoma","authors":"J. D. Haslbauer, C. Wiegand, B. Hamelin, V. S. Ivanova, T. Menter, S. Savic Prince, A. Tzankov, K. D. Mertz","doi":"10.1186/s13027-024-00597-0","DOIUrl":null,"url":null,"abstract":"Marginal zone lymphomas of mucosa-associated lymphatic tissues (MZL of MALT) are a group of indolent B-cell neoplasms, which are thought to arise from chronic antigenic stimulation of B-cells either due to underlying chronic infection or autoimmune disease. Little is known about potential causative pathogens in pulmonary MZL (PMZL), although some data suggests a potential role of Achromobacter (A.) xylosoxidans. An index case of chronic pulmonary colonisation with Tropheryma (T.) whipplei and subsequent development of PMZL was identified by T. whipplei specific PCR and metagenomic next genome sequencing (mNGS). This case prompted a retrospectively conducted analysis of T. whipplei-specific PCRs in lung tissue from PMZL patients (n = 22), other pulmonary lymphomas, and normal controls. Positive results were confirmed by mNGS. A systematic search for T. whipplei and A. xylosoxidans in our in-house mNGS dataset comprising autopsy lungs, lung biopsies and lung resection specimens (n = 181) was subsequently performed. A 69-year-old patient presented with weight loss and persistent pulmonary consolidation. Subsequent mNGS analysis detected T. whipplei in the resected lung specimen. An antibiotic regimen eventually eliminated the bacterium. However, the consolidation persisted, and the diagnosis of PMZL was made in a second lung resection specimen. A second case of T. whipplei-associated PMZL was subsequently detected in the retrospectively analysed PMZL cohort. Both cases showed comparatively few mutations and no mutations in genes encoding for NF-κB pathway components, suggesting that T. whipplei infection may substitute for mutations in these PMZL. None of the samples in our in-house dataset tested positive for T. whipplei. In contrast, A. xylosoxidans was frequently found in both autopsy lungs and lung biopsy / resection specimens that were not affected by PMZL (> 50%). Our data suggests that T. whipplei colonisation of lungs may trigger PMZL as a potential driver. Systematic analyses with larger cohorts should be conducted to further support this hypothesis. The frequent detection of A. xylosoxidans in lung tissue suggests that it is a common component of the pulmonary microbiome and therefore less likely to trigger lymphomas.","PeriodicalId":13568,"journal":{"name":"Infectious Agents and Cancer","volume":"95 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Agents and Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13027-024-00597-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marginal zone lymphomas of mucosa-associated lymphatic tissues (MZL of MALT) are a group of indolent B-cell neoplasms, which are thought to arise from chronic antigenic stimulation of B-cells either due to underlying chronic infection or autoimmune disease. Little is known about potential causative pathogens in pulmonary MZL (PMZL), although some data suggests a potential role of Achromobacter (A.) xylosoxidans. An index case of chronic pulmonary colonisation with Tropheryma (T.) whipplei and subsequent development of PMZL was identified by T. whipplei specific PCR and metagenomic next genome sequencing (mNGS). This case prompted a retrospectively conducted analysis of T. whipplei-specific PCRs in lung tissue from PMZL patients (n = 22), other pulmonary lymphomas, and normal controls. Positive results were confirmed by mNGS. A systematic search for T. whipplei and A. xylosoxidans in our in-house mNGS dataset comprising autopsy lungs, lung biopsies and lung resection specimens (n = 181) was subsequently performed. A 69-year-old patient presented with weight loss and persistent pulmonary consolidation. Subsequent mNGS analysis detected T. whipplei in the resected lung specimen. An antibiotic regimen eventually eliminated the bacterium. However, the consolidation persisted, and the diagnosis of PMZL was made in a second lung resection specimen. A second case of T. whipplei-associated PMZL was subsequently detected in the retrospectively analysed PMZL cohort. Both cases showed comparatively few mutations and no mutations in genes encoding for NF-κB pathway components, suggesting that T. whipplei infection may substitute for mutations in these PMZL. None of the samples in our in-house dataset tested positive for T. whipplei. In contrast, A. xylosoxidans was frequently found in both autopsy lungs and lung biopsy / resection specimens that were not affected by PMZL (> 50%). Our data suggests that T. whipplei colonisation of lungs may trigger PMZL as a potential driver. Systematic analyses with larger cohorts should be conducted to further support this hypothesis. The frequent detection of A. xylosoxidans in lung tissue suggests that it is a common component of the pulmonary microbiome and therefore less likely to trigger lymphomas.
期刊介绍:
Infectious Agents and Cancer is an open access, peer-reviewed online journal that encompasses all aspects of basic, clinical, epidemiological and translational research providing an insight into the association between chronic infections and cancer.
The journal welcomes submissions in the pathogen-related cancer areas and other related topics, in particular:
• HPV and anogenital cancers, as well as head and neck cancers;
• EBV and Burkitt lymphoma;
• HCV/HBV and hepatocellular carcinoma as well as lymphoproliferative diseases;
• HHV8 and Kaposi sarcoma;
• HTLV and leukemia;
• Cancers in Low- and Middle-income countries.
The link between infection and cancer has become well established over the past 50 years, and infection-associated cancer contribute up to 16% of cancers in developed countries and 33% in less developed countries.
Preventive vaccines have been developed for only two cancer-causing viruses, highlighting both the opportunity to prevent infection-associated cancers by vaccination and the gaps that remain before vaccines can be developed for other cancer-causing agents. These gaps are due to incomplete understanding of the basic biology, natural history, epidemiology of many of the pathogens that cause cancer, the mechanisms they exploit to cause cancer, and how to interrupt progression to cancer in human populations. Early diagnosis or identification of lesions at high risk of progression represent the current most critical research area of the field supported by recent advances in genomics and proteomics technologies.