A machine learning approach for buckling analysis of a bi-directional FG microbeam

Aiman Tariq, Büşra Uzun, Babür Deliktaş, Mustafa Özgür Yayli
{"title":"A machine learning approach for buckling analysis of a bi-directional FG microbeam","authors":"Aiman Tariq, Büşra Uzun, Babür Deliktaş, Mustafa Özgür Yayli","doi":"10.1007/s00542-024-05724-w","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the buckling analysis of a bi-directional functionally graded nanobeam (BD-FGNB) on a Winkler foundation through machine learning (ML) methodologies and semi-analytical solution based on Fourier series and Stokes’ transform. Buckling is investigated via nonlocal strain gradient theory that incorporates the effects of both nonlocal theory and strain gradient theory into the problem. The nonlocal strain gradient theory is employed to model the nanobeam and generate the dataset for training ten distinct ML models. The predictive capabilities of models are evaluated and the ML model with best predictive accuracy is identified by comparing their outcomes against analytical results. Results indicate the exceptional performance of the XGBoost (XGB) model in precisely predicting buckling loads while maintaining high computational efficiency. The R<sup>2</sup>, MAE, and RMSE evaluation metrics demonstrate remarkable values of 0.999, 2.05, and 3.58, respectively, affirming the model's accuracy. Utilizing the SHAP approach, it is found that the foundation parameter has the highest impact on the initial buckling mode, while its impact reduces in subsequent modes. The results from SHAP are validated using the analytical solution where both approaches show that higher values of foundation and material length scale parameters increases the buckling load, however higher values of nonlocal parameter and material grading coefficient in y and z directions decreases the buckling load.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05724-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the buckling analysis of a bi-directional functionally graded nanobeam (BD-FGNB) on a Winkler foundation through machine learning (ML) methodologies and semi-analytical solution based on Fourier series and Stokes’ transform. Buckling is investigated via nonlocal strain gradient theory that incorporates the effects of both nonlocal theory and strain gradient theory into the problem. The nonlocal strain gradient theory is employed to model the nanobeam and generate the dataset for training ten distinct ML models. The predictive capabilities of models are evaluated and the ML model with best predictive accuracy is identified by comparing their outcomes against analytical results. Results indicate the exceptional performance of the XGBoost (XGB) model in precisely predicting buckling loads while maintaining high computational efficiency. The R2, MAE, and RMSE evaluation metrics demonstrate remarkable values of 0.999, 2.05, and 3.58, respectively, affirming the model's accuracy. Utilizing the SHAP approach, it is found that the foundation parameter has the highest impact on the initial buckling mode, while its impact reduces in subsequent modes. The results from SHAP are validated using the analytical solution where both approaches show that higher values of foundation and material length scale parameters increases the buckling load, however higher values of nonlocal parameter and material grading coefficient in y and z directions decreases the buckling load.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于双向 FG 微梁屈曲分析的机器学习方法
本研究通过机器学习(ML)方法和基于傅里叶级数和斯托克斯变换的半解析解,研究了在温克勒地基上的双向功能分级纳米梁(BD-FGNB)的屈曲分析。屈曲通过非局部应变梯度理论进行研究,该理论将非局部理论和应变梯度理论的影响都纳入到问题中。采用非局部应变梯度理论对纳米梁进行建模,并生成用于训练十个不同 ML 模型的数据集。通过将模型结果与分析结果进行比较,评估了模型的预测能力,并确定了具有最佳预测精度的 ML 模型。结果表明,XGBoost(XGB)模型在精确预测屈曲载荷方面表现出色,同时保持了较高的计算效率。R2、MAE 和 RMSE 评估指标分别显示出 0.999、2.05 和 3.58 的显著值,肯定了模型的准确性。利用 SHAP 方法发现,地基参数对初始屈曲模式的影响最大,而对后续模式的影响则有所减小。SHAP 方法的结果通过分析解决方案得到了验证,两种方法都表明,地基和材料长度尺度参数值越高,屈曲载荷越大,而非局部参数值和材料在 y 和 z 方向上的级配系数越高,屈曲载荷越小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the initial viscosity and substrate corner geometry on edge beading of photoresist films An investigation on static, vibration and stability analyses of elastically restrained FG porous Timoshenko nanobeams Flexible capacitive humidity sensor based on potassium ion-doped PVA/CAB double-layer sensing film Modelling and optimization of compound lever-based displacement amplifier in a MEMS accelerometer Research on SMA motor modelling and control algorithm for optical image stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1