Laura Jamieson, Carlos Francisco Moreno-Garcia, Eyad Elyan
{"title":"Towards fully automated processing and analysis of construction diagrams: AI-powered symbol detection","authors":"Laura Jamieson, Carlos Francisco Moreno-Garcia, Eyad Elyan","doi":"10.1007/s10032-024-00492-9","DOIUrl":null,"url":null,"abstract":"<p>Construction drawings are frequently stored in undigitised formats and consequently, their analysis requires substantial manual effort. This is true for many crucial tasks, including material takeoff where the purpose is to obtain a list of the equipment and respective amounts required for a project. Engineering drawing digitisation has recently attracted increased attention, however construction drawings have received considerably less interest compared to other types. To address these issues, this paper presents a novel framework for the automatic processing of construction drawings. Extensive experiments were performed using two state-of-the-art deep learning models for object detection in challenging high-resolution drawings sourced from industry. The results show a significant reduction in the time required for drawing analysis. Promising performance was achieved for symbol detection across various classes, with a mean average precision of 79% for the YOLO-based method and 83% for the Faster R-CNN-based method. This framework enables the digital transformation of construction drawings, improving tasks such as material takeoff and many others.\n</p>","PeriodicalId":50277,"journal":{"name":"International Journal on Document Analysis and Recognition","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Document Analysis and Recognition","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10032-024-00492-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Construction drawings are frequently stored in undigitised formats and consequently, their analysis requires substantial manual effort. This is true for many crucial tasks, including material takeoff where the purpose is to obtain a list of the equipment and respective amounts required for a project. Engineering drawing digitisation has recently attracted increased attention, however construction drawings have received considerably less interest compared to other types. To address these issues, this paper presents a novel framework for the automatic processing of construction drawings. Extensive experiments were performed using two state-of-the-art deep learning models for object detection in challenging high-resolution drawings sourced from industry. The results show a significant reduction in the time required for drawing analysis. Promising performance was achieved for symbol detection across various classes, with a mean average precision of 79% for the YOLO-based method and 83% for the Faster R-CNN-based method. This framework enables the digital transformation of construction drawings, improving tasks such as material takeoff and many others.
期刊介绍:
The large number of existing documents and the production of a multitude of new ones every year raise important issues in efficient handling, retrieval and storage of these documents and the information which they contain. This has led to the emergence of new research domains dealing with the recognition by computers of the constituent elements of documents - including characters, symbols, text, lines, graphics, images, handwriting, signatures, etc. In addition, these new domains deal with automatic analyses of the overall physical and logical structures of documents, with the ultimate objective of a high-level understanding of their semantic content. We have also seen renewed interest in optical character recognition (OCR) and handwriting recognition during the last decade. Document analysis and recognition are obviously the next stage.
Automatic, intelligent processing of documents is at the intersections of many fields of research, especially of computer vision, image analysis, pattern recognition and artificial intelligence, as well as studies on reading, handwriting and linguistics. Although quality document related publications continue to appear in journals dedicated to these domains, the community will benefit from having this journal as a focal point for archival literature dedicated to document analysis and recognition.