Towards fully automated processing and analysis of construction diagrams: AI-powered symbol detection

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Document Analysis and Recognition Pub Date : 2024-07-25 DOI:10.1007/s10032-024-00492-9
Laura Jamieson, Carlos Francisco Moreno-Garcia, Eyad Elyan
{"title":"Towards fully automated processing and analysis of construction diagrams: AI-powered symbol detection","authors":"Laura Jamieson, Carlos Francisco Moreno-Garcia, Eyad Elyan","doi":"10.1007/s10032-024-00492-9","DOIUrl":null,"url":null,"abstract":"<p>Construction drawings are frequently stored in undigitised formats and consequently, their analysis requires substantial manual effort. This is true for many crucial tasks, including material takeoff where the purpose is to obtain a list of the equipment and respective amounts required for a project. Engineering drawing digitisation has recently attracted increased attention, however construction drawings have received considerably less interest compared to other types. To address these issues, this paper presents a novel framework for the automatic processing of construction drawings. Extensive experiments were performed using two state-of-the-art deep learning models for object detection in challenging high-resolution drawings sourced from industry. The results show a significant reduction in the time required for drawing analysis. Promising performance was achieved for symbol detection across various classes, with a mean average precision of 79% for the YOLO-based method and 83% for the Faster R-CNN-based method. This framework enables the digital transformation of construction drawings, improving tasks such as material takeoff and many others.\n</p>","PeriodicalId":50277,"journal":{"name":"International Journal on Document Analysis and Recognition","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Document Analysis and Recognition","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10032-024-00492-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Construction drawings are frequently stored in undigitised formats and consequently, their analysis requires substantial manual effort. This is true for many crucial tasks, including material takeoff where the purpose is to obtain a list of the equipment and respective amounts required for a project. Engineering drawing digitisation has recently attracted increased attention, however construction drawings have received considerably less interest compared to other types. To address these issues, this paper presents a novel framework for the automatic processing of construction drawings. Extensive experiments were performed using two state-of-the-art deep learning models for object detection in challenging high-resolution drawings sourced from industry. The results show a significant reduction in the time required for drawing analysis. Promising performance was achieved for symbol detection across various classes, with a mean average precision of 79% for the YOLO-based method and 83% for the Faster R-CNN-based method. This framework enables the digital transformation of construction drawings, improving tasks such as material takeoff and many others.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现施工图的全自动处理和分析:人工智能驱动的符号检测
施工图纸通常以非数字化格式存储,因此,对其进行分析需要大量的人工工作。许多关键任务都是如此,包括材料估算,其目的是获得项目所需设备和相应数量的清单。工程图纸数字化最近引起了越来越多的关注,但与其他类型的图纸相比,建筑图纸受到的关注要少得多。为了解决这些问题,本文提出了一种自动处理建筑图纸的新框架。我们使用两种最先进的深度学习模型进行了广泛的实验,以检测具有挑战性的工业高分辨率图纸中的对象。结果表明,图纸分析所需的时间大大缩短。基于 YOLO 的方法的平均精确度为 79%,基于 Faster R-CNN 的方法的平均精确度为 83%。该框架实现了施工图纸的数字化转换,改进了材料估算等任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal on Document Analysis and Recognition
International Journal on Document Analysis and Recognition 工程技术-计算机:人工智能
CiteScore
6.20
自引率
4.30%
发文量
30
审稿时长
7.5 months
期刊介绍: The large number of existing documents and the production of a multitude of new ones every year raise important issues in efficient handling, retrieval and storage of these documents and the information which they contain. This has led to the emergence of new research domains dealing with the recognition by computers of the constituent elements of documents - including characters, symbols, text, lines, graphics, images, handwriting, signatures, etc. In addition, these new domains deal with automatic analyses of the overall physical and logical structures of documents, with the ultimate objective of a high-level understanding of their semantic content. We have also seen renewed interest in optical character recognition (OCR) and handwriting recognition during the last decade. Document analysis and recognition are obviously the next stage. Automatic, intelligent processing of documents is at the intersections of many fields of research, especially of computer vision, image analysis, pattern recognition and artificial intelligence, as well as studies on reading, handwriting and linguistics. Although quality document related publications continue to appear in journals dedicated to these domains, the community will benefit from having this journal as a focal point for archival literature dedicated to document analysis and recognition.
期刊最新文献
A survey on artificial intelligence-based approaches for personality analysis from handwritten documents In-domain versus out-of-domain transfer learning for document layout analysis Deep learning-based modified-EAST scene text detector: insights from a novel multiscript dataset Towards fully automated processing and analysis of construction diagrams: AI-powered symbol detection GAN-based text line segmentation method for challenging handwritten documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1