Mohd Ali, Renuka Singh, Debanjan Guin, Chandra Shekhar Pati Tripathi
{"title":"BaTiO3-MoS2 Nanocomposite as a New Peroxidase Mimic for the Colorimetric and Smartphone-Assisted Detection of H2O2","authors":"Mohd Ali, Renuka Singh, Debanjan Guin, Chandra Shekhar Pati Tripathi","doi":"10.1007/s10876-024-02664-3","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting and monitoring hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels is crucial across various industries due to its potential health hazards at elevated concentrations. Hence, there’s an urgent need for cost-effective, rapid, and straightforward analytical methods for H<sub>2</sub>O<sub>2</sub> detection and monitoring. This study introduces a simple synthesis method for Barium Titanate (BaTiO<sub>3</sub>) and Molybdenum disulfide (MoS<sub>2</sub>) (BaTiO<sub>3</sub>/MS) nanocomposite via mechanochemical means. The nanocomposite exhibits remarkable peroxidase-like activity, catalyzing the oxidation of TMB (3,3’,5,5’-tetramethylbenzidine) in the presence of H<sub>2</sub>O<sub>2</sub>. This catalytic reaction results in the formation of a blue-colored solution with an absorbance peak at 652 nm. The increase in absorbance, facilitated by the catalytic properties of BaTiO<sub>3</sub>/MS enables precise detection of H<sub>2</sub>O<sub>2</sub> with a detection limit of 8.0 µM. Furthermore, a modified filter paper incorporating the nanocomposite and agarose gel with TMB was developed. The change in color intensity of the filter paper upon exposure to H<sub>2</sub>O<sub>2</sub> was observed and quantified in terms of RGB (Red Green Blue) values using an Android smartphone-based software Color Meter as well as Windows-based software ImageJ. Both the programs gave nearly similar RGB values. This paper-based sensor eliminates the reliance on a UV-visible spectrophotometer, making it portable and user-friendly. This study presents a novel approach for optical and colorimetric detection, with the potential to advance sensing devices for various analytes.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2393 - 2404"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02664-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting and monitoring hydrogen peroxide (H2O2) levels is crucial across various industries due to its potential health hazards at elevated concentrations. Hence, there’s an urgent need for cost-effective, rapid, and straightforward analytical methods for H2O2 detection and monitoring. This study introduces a simple synthesis method for Barium Titanate (BaTiO3) and Molybdenum disulfide (MoS2) (BaTiO3/MS) nanocomposite via mechanochemical means. The nanocomposite exhibits remarkable peroxidase-like activity, catalyzing the oxidation of TMB (3,3’,5,5’-tetramethylbenzidine) in the presence of H2O2. This catalytic reaction results in the formation of a blue-colored solution with an absorbance peak at 652 nm. The increase in absorbance, facilitated by the catalytic properties of BaTiO3/MS enables precise detection of H2O2 with a detection limit of 8.0 µM. Furthermore, a modified filter paper incorporating the nanocomposite and agarose gel with TMB was developed. The change in color intensity of the filter paper upon exposure to H2O2 was observed and quantified in terms of RGB (Red Green Blue) values using an Android smartphone-based software Color Meter as well as Windows-based software ImageJ. Both the programs gave nearly similar RGB values. This paper-based sensor eliminates the reliance on a UV-visible spectrophotometer, making it portable and user-friendly. This study presents a novel approach for optical and colorimetric detection, with the potential to advance sensing devices for various analytes.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.