Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn
{"title":"Marginal inference for hierarchical generalized linear mixed models with patterned covariance matrices using the Laplace approximation","authors":"Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn","doi":"10.1002/env.2872","DOIUrl":null,"url":null,"abstract":"<p>We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2872","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.