Simulation and prediction of dynamic process of loess landslide and its impact damage to houses

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers in Earth Science Pub Date : 2024-07-26 DOI:10.3389/feart.2024.1434519
Zhou Zhao, Yuhan Zhang, Xing Chen, Jiangbo Wei, Jianquan Ma, Hao Tang, Fei Liu
{"title":"Simulation and prediction of dynamic process of loess landslide and its impact damage to houses","authors":"Zhou Zhao, Yuhan Zhang, Xing Chen, Jiangbo Wei, Jianquan Ma, Hao Tang, Fei Liu","doi":"10.3389/feart.2024.1434519","DOIUrl":null,"url":null,"abstract":"The mountainous areas of the Loess Plateau in China are crisscrossed with ravines, fragile ecological environment, and frequent landslide hazards. Landslides often cause building collapses and casualties, seriously affecting the sustainability of economic and social development in the region. In order to study the damage of loess landslides to village and town buildings, the paper takes the Xingwang landslide in Fugu County, Shaanxi Province, China as an example, and uses discrete element method and finite element method to study the dynamic process of landslide and its damage to houses. Firstly, the geological characteristics of the landslide were identified by means of investigation, surveying, engineering exploration and geotechnical testing. Secondly, a three-dimensional numerical model of the landslide area was established by using the particle flow code system (PFC<jats:sup>3D</jats:sup>). Finally, the entire movement process of the landslide was simulated, and the impact damage to houses induced from landslide was analyzed and predicted. The results show that the whole movement of the landslide lasted a total of 180 s, with a maximum average velocity of 2.01 m/s and a maximum average displacement of 73.7 m. The first and second rows of houses located at the foot of the landslide will suffer serious damage, with most bricks displacement ranging from 0.1 to 2.5 m and a maximum displacement of 10.3 m, posing a serious safety risk to the houses. Only a portion of the third row houses will be damaged, and the fourth row houses will not be threatened by landslide. By comparing with the prediction results of other methods and the current situation of buildings deformation, the results of this paper have a certain credibility. This study provides a numerical method for quantitative assessment of the risk and building damage for loess landslide, which can be used as a reference. It also provides technical support for formulating hazard prevention and reduction plans for the Xingwang landslide.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1434519","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mountainous areas of the Loess Plateau in China are crisscrossed with ravines, fragile ecological environment, and frequent landslide hazards. Landslides often cause building collapses and casualties, seriously affecting the sustainability of economic and social development in the region. In order to study the damage of loess landslides to village and town buildings, the paper takes the Xingwang landslide in Fugu County, Shaanxi Province, China as an example, and uses discrete element method and finite element method to study the dynamic process of landslide and its damage to houses. Firstly, the geological characteristics of the landslide were identified by means of investigation, surveying, engineering exploration and geotechnical testing. Secondly, a three-dimensional numerical model of the landslide area was established by using the particle flow code system (PFC3D). Finally, the entire movement process of the landslide was simulated, and the impact damage to houses induced from landslide was analyzed and predicted. The results show that the whole movement of the landslide lasted a total of 180 s, with a maximum average velocity of 2.01 m/s and a maximum average displacement of 73.7 m. The first and second rows of houses located at the foot of the landslide will suffer serious damage, with most bricks displacement ranging from 0.1 to 2.5 m and a maximum displacement of 10.3 m, posing a serious safety risk to the houses. Only a portion of the third row houses will be damaged, and the fourth row houses will not be threatened by landslide. By comparing with the prediction results of other methods and the current situation of buildings deformation, the results of this paper have a certain credibility. This study provides a numerical method for quantitative assessment of the risk and building damage for loess landslide, which can be used as a reference. It also provides technical support for formulating hazard prevention and reduction plans for the Xingwang landslide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄土滑坡动态过程及其对房屋破坏影响的模拟与预测
中国黄土高原山区沟壑纵横,生态环境脆弱,滑坡灾害频发。滑坡经常造成建筑物倒塌和人员伤亡,严重影响了该地区经济和社会的可持续发展。为了研究黄土滑坡对村镇建筑的破坏,本文以陕西省府谷县兴旺滑坡为例,采用离散元法和有限元法研究滑坡的动力过程及其对房屋的破坏。首先,通过调查、测量、工程勘探和岩土测试,确定了滑坡的地质特征。其次,利用粒子流代码系统(PFC3D)建立了滑坡区域的三维数值模型。最后,模拟了滑坡的整个运动过程,并分析和预测了滑坡对房屋造成的影响破坏。结果表明,滑坡的整个运动过程共持续 180 s,最大平均速度为 2.01 m/s,最大平均位移为 73.7 m,位于滑坡脚下的第一排和第二排房屋将遭受严重破坏,大部分砖块位移在 0.1 至 2.5 m 之间,最大位移达 10.3 m,对房屋安全构成严重威胁。只有第三排房屋部分受损,第四排房屋不受滑坡威胁。通过与其他方法的预测结果和建筑物变形现状的比较,本文的结果具有一定的可信度。本研究为黄土滑坡风险和建筑物破坏的定量评估提供了一种数值方法,可供参考。同时,也为制定兴旺滑坡的防灾减灾规划提供了技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
期刊最新文献
Study on InSAR deformation information extraction and stress state assessment in a railway tunnel in a plateau area Influence of the sedimentary environment of the Wufeng-Longmaxi shale on organic matter accumulation in the Dingshan area, Sichuan Basin Multifactor-coupled study on freeze-thaw forces of rocks in cold regions Maximising the value of hyperspectral drill core scanning through real-time processing and analysis Converged ensemble simulations of climate: possible trends in total solar irradiance cannot explain global warming alone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1