Seasonal ice encapsulation: the pivotal influence on microplastic transport and fate in cold regions

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-07-24 DOI:10.1039/d4ew00339j
Zhikun Chen, Maria Elektorowicz, Chunjiang An, Xuelin Tian
{"title":"Seasonal ice encapsulation: the pivotal influence on microplastic transport and fate in cold regions","authors":"Zhikun Chen, Maria Elektorowicz, Chunjiang An, Xuelin Tian","doi":"10.1039/d4ew00339j","DOIUrl":null,"url":null,"abstract":"Owing to their small size and stability, MPs have been found to be present in different media all over the world, even in the most remote regions such as the Arctic and Antarctic. The presence of MPs in the waters of the Arctic and Antarctic regions has been widely documented for decades, but the phenomenon of MPs becoming concentrated in sea ice was first reported only ten years ago. The successive reduction in the Arctic sea ice extent during the summer months in recent years could lead to a significant release of MPs that have accumulated over the past decades, potentially yielding unforeseen impacts on the ecosystems of cold regions. However, there has been limited research on the mechanisms and physical processes that govern the incorporation of MPs into the growing ice matrix. The incorporation of MPs during the ice formation process is influenced by polymer properties and prevailing environmental conditions. Therefore, it is becoming increasingly important to investigate the effects of freezing on MP behavior in aquatic environments, especially considering the potential release of accumulated MPs as sea ice continues to diminish.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4ew00339j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their small size and stability, MPs have been found to be present in different media all over the world, even in the most remote regions such as the Arctic and Antarctic. The presence of MPs in the waters of the Arctic and Antarctic regions has been widely documented for decades, but the phenomenon of MPs becoming concentrated in sea ice was first reported only ten years ago. The successive reduction in the Arctic sea ice extent during the summer months in recent years could lead to a significant release of MPs that have accumulated over the past decades, potentially yielding unforeseen impacts on the ecosystems of cold regions. However, there has been limited research on the mechanisms and physical processes that govern the incorporation of MPs into the growing ice matrix. The incorporation of MPs during the ice formation process is influenced by polymer properties and prevailing environmental conditions. Therefore, it is becoming increasingly important to investigate the effects of freezing on MP behavior in aquatic environments, especially considering the potential release of accumulated MPs as sea ice continues to diminish.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
季节性冰封:对寒冷地区微塑料迁移和归宿的关键影响
由于体积小且稳定,人们发现 MPs 存在于世界各地的不同介质中,甚至在北极和南极等最偏远的地区。几十年来,北极和南极地区水域中存在的 MPs 已被广泛记录在案,但 MPs 集中在海冰中的现象直到十年前才首次被报道。近年来,北极夏季海冰范围不断缩小,这可能导致过去几十年积累的 MPs 大量释放,从而对寒冷地区的生态系统造成不可预见的影响。然而,关于多孔质微粒融入不断生长的冰基质的机制和物理过程的研究还很有限。在冰形成过程中,多孔质材料的掺入受聚合物特性和普遍环境条件的影响。因此,研究冰冻对水生环境中 MP 行为的影响变得越来越重要,特别是考虑到随着海冰的不断减少,累积的 MP 可能会释放出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover Improving Chlorine Residual Predictions in Water Distribution Systems using Recurrent Neural Networks A Comparative Study on Optimizing Electrocoagulation for Organic Contaminant Removal in Shale Gas Fracturing Wastewater UV-LED irradiation for biofouling reduction in drip irrigation emitters fed by wastewater effluent Fouling control of different pretreatments on ceramic fouling ultrafiltration: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1