CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2024-07-26 DOI:10.1007/s10616-024-00645-y
Aswathy Chandrababu, Jayesh Puthumana
{"title":"CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition","authors":"Aswathy Chandrababu, Jayesh Puthumana","doi":"10.1007/s10616-024-00645-y","DOIUrl":null,"url":null,"abstract":"<p>Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00645-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以细胞为基础的 CRISPR 编辑肉类和海产品,可为未来提供保障,从而提高全球粮食安全和营养水平
由于人口增长和气候变化,粮食安全成为人们关注的主要问题。提高粮食产量的一种方法是利用现代生物技术,如细胞培养、标记辅助选择和基因工程。细胞农业使人们能够在生物反应器中生产细胞培养的肉类,这种肉类模仿传统肉类的特性。此外,三维食品打印技术通过增加新的营养和感官特性,改善了食品生产。标记辅助选择和基因工程可在生产具有理想性状的动物和作物方面发挥重要作用。因此,将细胞农业与基因工程技术相结合,可能是未来生产对健康有益的细胞肉类和海产品的潜在策略。本综述重点介绍了从家畜、鸟类、鱼类和海洋甲壳类动物等多种物种中提取的细胞培养肉类的生产情况。它还研究了基因工程方法在细胞农业中的应用,如 CRISPR/Cas(簇状规则间隔短回文重复序列/CRISPR 相关蛋白)。此外,它还研究了食品安全、监管考虑因素以及消费者对基因工程细胞培养肉类和海产品的接受程度等方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
Hydrolyzed cow colostrum extract (BCFM) inhibits alpha-MSH-induced melanogenesis in B16F1 cells via regulation of the MC1R-cAMP signaling pathway MiR-133 promotes the multidrug resistance of acute myeloid leukemia cells (HL-60/ADR) to daunorubicin Effect of combined blue light and 5-ALA on mitochondrial functions and cellular responses in B16F1 melanoma and HaCaT cells Establishing an evaluation system for T cell activation and anergy based on CD25 expression levels as an indicator LINC00161 upregulated by M2-like tumor-associated macrophages promotes hepatocellular carcinoma progression by methylating HACE1 promoters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1