Loes Stessens, Jasper Gielen, Romain Meeusen, Jean-Marie Aerts
{"title":"Physical performance estimation in practice: A systematic review of advancements in performance prediction and modeling in cycling","authors":"Loes Stessens, Jasper Gielen, Romain Meeusen, Jean-Marie Aerts","doi":"10.1177/17479541241262385","DOIUrl":null,"url":null,"abstract":"Physical performance in cycling is commonly evaluated with laboratory-based performance markers. However, these markers are not monitored on a regular basis, mainly due to the high costs of testing equipment, invasive sampling and time-intensive protocols. The use of mathematical modeling offers a promising alternative allowing for consistent performance monitoring, identification of influential variables affecting performance, and facilitation of planning, monitoring, and predictive analysis. Wearable technology, such as physiological and biomechanical sensors, can be integrated with mathematical models to enhance the practicality of performance monitoring and enable real-time feedback and personalized training recommendations. In this systematic review, we attempted to provide an overview of the developments in predicting and modeling of performance in cycling and their respective practical applications. The PRISMA framework yielded 52 studies that met the inclusion criteria. The models were discussed according to their modeling goal: characterizing kinetics, alternatives to the gold-standard, training control, observing training effects, predicting competitive performance and optimizing performance. Field-based models and technological advancements were highlighted as solutions to the limitations of gold-standard testing. Due to the lower accuracies of modeling techniques, the gold-standard laboratory-based methods of testing will not be replaced by mathematical models. However, models do form a more practical alternative for regular monitoring and a powerful tool for training and competition optimization. A modeling technique needs to be individualized to the goal and the person and be as simple as possible to allow regular monitoring. Ideally, the technique would work in the field, uses submaximal exercise intensities and integrates technological advancements such as wearable technology and machine learning to increase the practicality even more.","PeriodicalId":47767,"journal":{"name":"International Journal of Sports Science & Coaching","volume":"140 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sports Science & Coaching","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1177/17479541241262385","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Physical performance in cycling is commonly evaluated with laboratory-based performance markers. However, these markers are not monitored on a regular basis, mainly due to the high costs of testing equipment, invasive sampling and time-intensive protocols. The use of mathematical modeling offers a promising alternative allowing for consistent performance monitoring, identification of influential variables affecting performance, and facilitation of planning, monitoring, and predictive analysis. Wearable technology, such as physiological and biomechanical sensors, can be integrated with mathematical models to enhance the practicality of performance monitoring and enable real-time feedback and personalized training recommendations. In this systematic review, we attempted to provide an overview of the developments in predicting and modeling of performance in cycling and their respective practical applications. The PRISMA framework yielded 52 studies that met the inclusion criteria. The models were discussed according to their modeling goal: characterizing kinetics, alternatives to the gold-standard, training control, observing training effects, predicting competitive performance and optimizing performance. Field-based models and technological advancements were highlighted as solutions to the limitations of gold-standard testing. Due to the lower accuracies of modeling techniques, the gold-standard laboratory-based methods of testing will not be replaced by mathematical models. However, models do form a more practical alternative for regular monitoring and a powerful tool for training and competition optimization. A modeling technique needs to be individualized to the goal and the person and be as simple as possible to allow regular monitoring. Ideally, the technique would work in the field, uses submaximal exercise intensities and integrates technological advancements such as wearable technology and machine learning to increase the practicality even more.
期刊介绍:
The International Journal of Sports Science & Coaching is a peer-reviewed, international, academic/professional journal, which aims to bridge the gap between coaching and sports science. The journal will integrate theory and practice in sports science, promote critical reflection of coaching practice, and evaluate commonly accepted beliefs about coaching effectiveness and performance enhancement. Open learning systems will be promoted in which: (a) sports science is made accessible to coaches, translating knowledge into working practice; and (b) the challenges faced by coaches are communicated to sports scientists. The vision of the journal is to support the development of a community in which: (i) sports scientists and coaches respect and learn from each other as they assist athletes to acquire skills by training safely and effectively, thereby enhancing their performance, maximizing their enjoyment of the sporting experience and facilitating character development; and (ii) scientific research is embraced in the quest to uncover, understand and develop the processes involved in sports coaching and elite performance.