{"title":"Multi-party privacy-preserving decision tree training with a privileged party","authors":"Yiwen Tong, Qi Feng, Min Luo, Debiao He","doi":"10.1007/s11432-023-4013-x","DOIUrl":null,"url":null,"abstract":"<p>Currently, a decision tree is the most commonly used data mining algorithm for classification tasks. While a significant number of studies have investigated privacy-preserving decision trees, the methods proposed in these studies often have shortcomings in terms of data privacy breach or efficiency. Additionally, these methods typically only apply to symmetric frameworks, which consist of two or more parties with equal privilege, and are not suitable for asymmetric scenarios where parties have unequal privilege. In this paper, we propose SecureCART, a three-party privacy-preserving decision tree training scheme with a privileged party. We adopt the existing pMPL framework and design novel secure interactive protocols for division, comparison, and asymmetric multiplication. Compared to similar schemes, our division protocol is 93.5–560.4 × faster, with the communication overhead reduced by over 90%; further, our multiplication protocol is approximately 1.5× faster, with the communication overhead reduced by around 20%. Our comparison protocol based on function secret sharing maintains good performance when adapted to pMPL. Based on the proposed secure protocols, we implement SecureCART in C++ and analyze its performance using three real-world datasets in both LAN and WAN environments. he experimental results indicate that SecureCART is significantly faster than similar schemes proposed in past studies, and that the loss of accuracy while using SecureCART remains within an acceptable range.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"43 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4013-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, a decision tree is the most commonly used data mining algorithm for classification tasks. While a significant number of studies have investigated privacy-preserving decision trees, the methods proposed in these studies often have shortcomings in terms of data privacy breach or efficiency. Additionally, these methods typically only apply to symmetric frameworks, which consist of two or more parties with equal privilege, and are not suitable for asymmetric scenarios where parties have unequal privilege. In this paper, we propose SecureCART, a three-party privacy-preserving decision tree training scheme with a privileged party. We adopt the existing pMPL framework and design novel secure interactive protocols for division, comparison, and asymmetric multiplication. Compared to similar schemes, our division protocol is 93.5–560.4 × faster, with the communication overhead reduced by over 90%; further, our multiplication protocol is approximately 1.5× faster, with the communication overhead reduced by around 20%. Our comparison protocol based on function secret sharing maintains good performance when adapted to pMPL. Based on the proposed secure protocols, we implement SecureCART in C++ and analyze its performance using three real-world datasets in both LAN and WAN environments. he experimental results indicate that SecureCART is significantly faster than similar schemes proposed in past studies, and that the loss of accuracy while using SecureCART remains within an acceptable range.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.