Geometric phase and multipartite entanglement of Rydberg atom chains

Chang-Yan Wang
{"title":"Geometric phase and multipartite entanglement of Rydberg atom chains","authors":"Chang-Yan Wang","doi":"arxiv-2407.14854","DOIUrl":null,"url":null,"abstract":"We investigate the behavior of geometric phase (GP) and geometric\nentanglement (GE), a multipartite entanglement measure, across quantum phase\ntransitions in Rydberg atom chains. Using density matrix renormalization group\ncalculations and finite-size scaling analysis, we characterize the critical\nproperties of transitions between disordered and ordered phases. Both\nquantities exhibit characteristic scaling near transition points, with the\ndisorder to $Z_2$ ordered phase transition showing behavior consistent with the\nIsing universality class, while the disorder to $Z_3$ phase transition displays\ndistinct critical properties. We demonstrate that GP and GE serve as sensitive\nprobes of quantum criticality, providing consistent critical parameters and\nscaling behavior. A unifying description of these geometric quantities from a\nquantum geometry perspective is explored, and an interferometric setup for\ntheir potential measurement is discussed. Our results provide insights into the\ninterplay between geometric phase and multipartite entanglement near quantum\nphase transitions in Rydberg atom systems, revealing how these quantities\nreflect the underlying critical behavior in these complex quantum many-body\nsystems.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the behavior of geometric phase (GP) and geometric entanglement (GE), a multipartite entanglement measure, across quantum phase transitions in Rydberg atom chains. Using density matrix renormalization group calculations and finite-size scaling analysis, we characterize the critical properties of transitions between disordered and ordered phases. Both quantities exhibit characteristic scaling near transition points, with the disorder to $Z_2$ ordered phase transition showing behavior consistent with the Ising universality class, while the disorder to $Z_3$ phase transition displays distinct critical properties. We demonstrate that GP and GE serve as sensitive probes of quantum criticality, providing consistent critical parameters and scaling behavior. A unifying description of these geometric quantities from a quantum geometry perspective is explored, and an interferometric setup for their potential measurement is discussed. Our results provide insights into the interplay between geometric phase and multipartite entanglement near quantum phase transitions in Rydberg atom systems, revealing how these quantities reflect the underlying critical behavior in these complex quantum many-body systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雷德贝格原子链的几何相位和多方纠缠
我们研究了雷德贝格原子链中几何相位(GP)和几何纠缠(GE)(一种多方纠缠度量)在量子相位转换中的行为。利用密度矩阵重正化群计算和有限尺寸缩放分析,我们描述了无序相和有序相之间跃迁的临界特性。这两个量级在过渡点附近都显示出特征性的缩放,无序到 Z_2$ 有序相的过渡显示出与伊兴普遍性类一致的行为,而无序到 Z_3$ 相的过渡则显示出不同的临界特性。我们证明,GP 和 GE 可作为量子临界性的灵敏探测器,提供一致的临界参数和缩放行为。我们从量子几何的角度探讨了对这些几何量的统一描述,并讨论了对它们进行潜在测量的干涉测量装置。我们的研究结果深入揭示了雷德贝格原子系统中量子相变附近几何相位与多方纠缠之间的相互作用,揭示了这些量子如何反映这些复杂量子多体系统的基本临界行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boundary-localized many-body bound states in the continuum Correlations of the Current Density in Many-Body Landau Level States Measurement resolution enhanced coherence for lattice fermions Finite temperature stability of quantized vortex structures in rotating Bose-Einstein condensates via complex Langevin simulation Josephson effect and self-trapping in helicoidal spin-orbit coupled Bose-Einstein condensates with optical lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1