{"title":"Towards sustainable coastal management: a hybrid model for vulnerability and risk assessment","authors":"Ahmet Durap, Can Elmar Balas","doi":"10.1007/s11852-024-01065-y","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the development of a Hybrid Model (HM) integrated with a Bayesian Network (BN) for comprehensive coastal vulnerability and risk assessment, with a focus on Konyaaltı Beach, Antalya, Turkey. The HM incorporates critical environmental parameters such as wind, waves, currents, and sediment transport to simulate conditions at vulnerable coastal areas and perform risk assessments for storm effects, flooding, and erosion. The model includes submodules for predicting coastal storms, quantifying sediment transport rates, assessing tsunami inundation severity, and categorizing storms based on beach typologies. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for significant wave height predictions, enhancing the model's accuracy. The integration of hydrodynamic modeling, Bayesian networks, and ANFIS offers a robust framework for assessing coastal vulnerability and informing sustainable management practices. The study's results highlight the necessity for integrated risk management strategies, including adaptive infrastructure design, zoning and land use regulations, ecosystem-based management, and continuous monitoring and model refinement to enhance coastal resilience against dynamic environmental forces. This research provides valuable insights for mitigating the impacts of hazards on urban developments, contributing to the advancement of sustainable coastal management.</p>","PeriodicalId":48909,"journal":{"name":"Journal of Coastal Conservation","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coastal Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11852-024-01065-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of a Hybrid Model (HM) integrated with a Bayesian Network (BN) for comprehensive coastal vulnerability and risk assessment, with a focus on Konyaaltı Beach, Antalya, Turkey. The HM incorporates critical environmental parameters such as wind, waves, currents, and sediment transport to simulate conditions at vulnerable coastal areas and perform risk assessments for storm effects, flooding, and erosion. The model includes submodules for predicting coastal storms, quantifying sediment transport rates, assessing tsunami inundation severity, and categorizing storms based on beach typologies. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for significant wave height predictions, enhancing the model's accuracy. The integration of hydrodynamic modeling, Bayesian networks, and ANFIS offers a robust framework for assessing coastal vulnerability and informing sustainable management practices. The study's results highlight the necessity for integrated risk management strategies, including adaptive infrastructure design, zoning and land use regulations, ecosystem-based management, and continuous monitoring and model refinement to enhance coastal resilience against dynamic environmental forces. This research provides valuable insights for mitigating the impacts of hazards on urban developments, contributing to the advancement of sustainable coastal management.
期刊介绍:
The Journal of Coastal Conservation is a scientific journal for the dissemination of both theoretical and applied research on integrated and sustainable management of the terrestrial, coastal and marine environmental interface.
A thorough understanding of both the physical and the human sciences is important to the study of the spatial patterns and processes observed in terrestrial, coastal and marine systems set in the context of past, present and future social and economic developments. This includes multidisciplinary and integrated knowledge and understanding of: physical geography, coastal geomorphology, sediment dynamics, hydrodynamics, soil science, hydrology, plant and animal ecology, vegetation science, biogeography, landscape ecology, recreation and tourism studies, urban and human ecology, coastal engineering and spatial planning, coastal zone management, and marine resource management.