Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes

IF 3 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Scientific Computing Pub Date : 2024-07-26 DOI:10.1137/23m1600505
Ajay Jasra, Kengo Kamatani, Mohamed Maama
{"title":"Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes","authors":"Ajay Jasra, Kengo Kamatani, Mohamed Maama","doi":"10.1137/23m1600505","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2475-A2502, August 2024. <br/> Abstract. In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in Lemaire, Thieullen, and Thomas [Adv. Appl. Probab., 52 (2020), pp. 138–172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"71 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1600505","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2475-A2502, August 2024.
Abstract. In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in Lemaire, Thieullen, and Thomas [Adv. Appl. Probab., 52 (2020), pp. 138–172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对一类部分观测的片断确定性马尔可夫过程的多级粒子过滤器
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2475-A2502 页,2024 年 8 月。 摘要本文考虑了一类部分观测的片断确定性马尔可夫过程的滤波问题。特别是,我们假设一个常微分方程(ODE)驱动着确定性元素,并且只能通过时间离散化进行数值求解。我们根据 Lemaire、Thieullen 和 Thomas [Adv. Appl. Probab.,52 (2020),pp. 138-172] 中的方法,开发了一种新的粒子和多级粒子滤波器 (MLPF),以近似与离散化 ODE 相关的滤波器。我们提供了与 MLPF 相关的均方误差约束,这为算法模拟参数的设置提供了指导,并意味着与使用粒子滤波器相比,可以获得显著的计算收益。我们的理论主张在几个数值示例中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
3.20%
发文量
209
审稿时长
1 months
期刊介绍: The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems. SISC papers are classified into three categories: 1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms. 2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist. 3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.
期刊最新文献
Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation Interpolating Parametrized Quantum Circuits Using Blackbox Queries Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes The Sparse-Grid-Based Adaptive Spectral Koopman Method Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1