{"title":"TibetanGoTinyNet: a lightweight U-Net style network for zero learning of Tibetan Go","authors":"Xiali Li, Yanyin Zhang, Licheng Wu, Yandong Chen, Junzhi Yu","doi":"10.1631/fitee.2300493","DOIUrl":null,"url":null,"abstract":"<p>The game of Tibetan Go faces the scarcity of expert knowledge and research literature. Therefore, we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scale-invariant U-Net style two-headed output lightweight network TibetanGoTinyNet. The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results. Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels. The training data are generated entirely from self-play games. TibetanGoTinyNet achieves 62%–78% winning rate against other four U-Net style models including Res-UNet, Res-UNet Attention, Ghost-UNet, and Ghost Capsule-UNet. It also achieves 75% winning rate in the ablation experiments on the attention mechanism with embedded positional information. The model saves about 33% of the training time with 45%–50% winning rate for different Monte-Carlo tree search (MCTS) simulation counts when migrated from 9 × 9 to 11 × 11 boards. Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The game of Tibetan Go faces the scarcity of expert knowledge and research literature. Therefore, we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scale-invariant U-Net style two-headed output lightweight network TibetanGoTinyNet. The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results. Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels. The training data are generated entirely from self-play games. TibetanGoTinyNet achieves 62%–78% winning rate against other four U-Net style models including Res-UNet, Res-UNet Attention, Ghost-UNet, and Ghost Capsule-UNet. It also achieves 75% winning rate in the ablation experiments on the attention mechanism with embedded positional information. The model saves about 33% of the training time with 45%–50% winning rate for different Monte-Carlo tree search (MCTS) simulation counts when migrated from 9 × 9 to 11 × 11 boards. Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.