Experimental Study on the Dynamic Response and Damage State of Steel Square Tubular Structural Components by Near-field Explosions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-23 DOI:10.1007/s12205-024-1679-y
Wanyue Wang, Shaobo Geng, Wenqiang Li, Yaling Liu, Ying Gao, Yunshan Han
{"title":"Experimental Study on the Dynamic Response and Damage State of Steel Square Tubular Structural Components by Near-field Explosions","authors":"Wanyue Wang, Shaobo Geng, Wenqiang Li, Yaling Liu, Ying Gao, Yunshan Han","doi":"10.1007/s12205-024-1679-y","DOIUrl":null,"url":null,"abstract":"<p>In order to explore the dynamic response and damage state of the steel square tubular structural component under blast-loading, A few experiments of near-field explosions are conducted respectively on five steel square tubes, Among them, two are hollow, one is wrapped with glass fiber-reinforced plastic (GFRP) on the front surface, and others are the one being infilled with C30 and the other with C70 concrete. It can be concluded from the analysis on the deformation and strain of the tubes that, at the same explosive mass, when the standoff distance of the steel square tube is lengthened from 48.5 mm to 68.5 mm, the maximal depth of deformation on the front surface is lessened by 37.5%, deflection by 42.1% and residual strain by 66.7%. As wrapped with GFRP, the maximal deformation is reduced by 17.0%, deflection by 30.8% and the residual strain is decreased by 69.5% respectively, the approach by wrapped with GFRP on the tube can improve the performance of blast resistance. While being infilled with concrete, the deformation of the tube is greatly reduced. Moreover, the deformation is decreased with the increment of the compressive strength of the concrete. Specifically, when the components are infilled with C30 and C70 respectively, the residual strains are decreased by 91.3% and 69.1% respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1679-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to explore the dynamic response and damage state of the steel square tubular structural component under blast-loading, A few experiments of near-field explosions are conducted respectively on five steel square tubes, Among them, two are hollow, one is wrapped with glass fiber-reinforced plastic (GFRP) on the front surface, and others are the one being infilled with C30 and the other with C70 concrete. It can be concluded from the analysis on the deformation and strain of the tubes that, at the same explosive mass, when the standoff distance of the steel square tube is lengthened from 48.5 mm to 68.5 mm, the maximal depth of deformation on the front surface is lessened by 37.5%, deflection by 42.1% and residual strain by 66.7%. As wrapped with GFRP, the maximal deformation is reduced by 17.0%, deflection by 30.8% and the residual strain is decreased by 69.5% respectively, the approach by wrapped with GFRP on the tube can improve the performance of blast resistance. While being infilled with concrete, the deformation of the tube is greatly reduced. Moreover, the deformation is decreased with the increment of the compressive strength of the concrete. Specifically, when the components are infilled with C30 and C70 respectively, the residual strains are decreased by 91.3% and 69.1% respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近场爆炸对方形钢管结构部件的动态响应和损伤状态的实验研究
为了探讨钢方管结构件在爆破荷载作用下的动态响应和损伤状态,我们分别对五根钢方管进行了近场爆破实验,其中两根为空心方管,一根前表面包裹玻璃纤维增强塑料(GFRP),另一根填充 C30 混凝土,一根填充 C70 混凝土。通过对钢管变形和应变的分析可以得出结论:在相同的爆炸质量下,当钢制方管的间距从 48.5 毫米加长到 68.5 毫米时,前表面的最大变形深度减少了 37.5%,挠度减少了 42.1%,残余应变减少了 66.7%。由于包裹了玻璃纤维增强塑料,最大变形分别减少了 17.0%,挠度减少了 30.8%,残余应变减少了 69.5%,因此在管材上包裹玻璃纤维增强塑料的方法可以提高抗爆性能。在填充混凝土的同时,管子的变形也大大减小。而且,随着混凝土抗压强度的增加,变形也会减小。具体来说,当组件分别填充 C30 和 C70 时,残余应变分别减少了 91.3% 和 69.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1