Lingling Liu, Liping Li, Juan Zhou, Qian Ye, Dianhuai Meng, Guangxu Xu
{"title":"Machine learning-based prediction model of lower extremity deep vein thrombosis after stroke","authors":"Lingling Liu, Liping Li, Juan Zhou, Qian Ye, Dianhuai Meng, Guangxu Xu","doi":"10.1007/s11239-024-03010-0","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to apply machine learning (ML) techniques to develop and validate a risk prediction model for post-stroke lower extremity deep vein thrombosis (DVT) based on patients’ limb function, activities of daily living (ADL), clinical laboratory indicators, and DVT preventive measures. We retrospectively analyzed 620 stroke patients. Eight ML models—logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), neural network (NN), extreme gradient boosting (XGBoost), Bayesian (NB), and K-nearest neighbor (KNN)—were used to build the model. These models were extensively evaluated using ROC curves, AUC, PR curves, PRAUC, accuracy, sensitivity, specificity, and clinical decision curves (DCA). Shapley’s additive explanation (SHAP) was used to determine feature importance. Finally, based on the optimal ML algorithm, different functional feature set models were compared with the Padua scale to select the best feature set model. Our results indicated that the RF algorithm demonstrated superior performance in various evaluation metrics, including AUC (0.74/0.73), PRAUC (0.58/0.58), accuracy (0.75/0.77), and sensitivity (0.78/0.80) in both the training set and test set. DCA analysis revealed that the RF model had the highest clinical net benefit. SHAP analysis showed that D-dimer had the most significant influence on DVT, followed by age, Brunnstrom stage (lower limb), prothrombin time (PT), and mobility ability. The RF algorithm can predict post-stroke DVT to guide clinical practice.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":17546,"journal":{"name":"Journal of Thrombosis and Thrombolysis","volume":"47 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thrombosis and Thrombolysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11239-024-03010-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to apply machine learning (ML) techniques to develop and validate a risk prediction model for post-stroke lower extremity deep vein thrombosis (DVT) based on patients’ limb function, activities of daily living (ADL), clinical laboratory indicators, and DVT preventive measures. We retrospectively analyzed 620 stroke patients. Eight ML models—logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), neural network (NN), extreme gradient boosting (XGBoost), Bayesian (NB), and K-nearest neighbor (KNN)—were used to build the model. These models were extensively evaluated using ROC curves, AUC, PR curves, PRAUC, accuracy, sensitivity, specificity, and clinical decision curves (DCA). Shapley’s additive explanation (SHAP) was used to determine feature importance. Finally, based on the optimal ML algorithm, different functional feature set models were compared with the Padua scale to select the best feature set model. Our results indicated that the RF algorithm demonstrated superior performance in various evaluation metrics, including AUC (0.74/0.73), PRAUC (0.58/0.58), accuracy (0.75/0.77), and sensitivity (0.78/0.80) in both the training set and test set. DCA analysis revealed that the RF model had the highest clinical net benefit. SHAP analysis showed that D-dimer had the most significant influence on DVT, followed by age, Brunnstrom stage (lower limb), prothrombin time (PT), and mobility ability. The RF algorithm can predict post-stroke DVT to guide clinical practice.
期刊介绍:
The Journal of Thrombosis and Thrombolysis is a long-awaited resource for contemporary cardiologists, hematologists, vascular medicine specialists and clinician-scientists actively involved in treatment decisions and clinical investigation of thrombotic disorders involving the cardiovascular and cerebrovascular systems. The principal focus of the Journal centers on the pathobiology of thrombosis and vascular disorders and the use of anticoagulants, platelet antagonists, cell-based therapies and interventions in scientific investigation, clinical-translational research and patient care.
The Journal will publish original work which emphasizes the interface between fundamental scientific principles and clinical investigation, stimulating an interdisciplinary and scholarly dialogue in thrombosis and vascular science. Published works will also define platforms for translational research, drug development, clinical trials and patient-directed applications. The Journal of Thrombosis and Thrombolysis'' integrated format will expand the reader''s knowledge base and provide important insights for both the investigation and direct clinical application of the most rapidly growing fields in medicine-thrombosis and vascular science.