Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics

George S Biggs, Emma E Cawood, Aini Vuorinen, William J McCarthy, Harry Wilders, Ioannis G Riziotis, Antonie J van der Zouwen, Jonathan Pettinger, Luke Nightingale, Peiling Chen, Andrew J Powell, David House, Simon J Boulton, J Mark Skehel, Katrin Rittinger, Jacob T Bush
{"title":"Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics","authors":"George S Biggs, Emma E Cawood, Aini Vuorinen, William J McCarthy, Harry Wilders, Ioannis G Riziotis, Antonie J van der Zouwen, Jonathan Pettinger, Luke Nightingale, Peiling Chen, Andrew J Powell, David House, Simon J Boulton, J Mark Skehel, Katrin Rittinger, Jacob T Bush","doi":"10.1101/2024.07.25.605137","DOIUrl":null,"url":null,"abstract":"Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge. We report a versatile, label-free quantification proteomics platform for competitive profiling of cysteine-reactive fragments against the native proteome. This high-throughput platform combines SP4 plate-based sample preparation with rapid chromatographic gradients. Data-independent acquisition performed on a Bruker timsTOF Pro 2 consistently identified ~23,000 cysteine sites per run, with a total of ~32,000 cysteine sites profiled in HEK293T and Jurkat lysate. Crucially, this depth in cysteinome coverage is met with high data completeness, enabling robust identification of liganded proteins. In this study, 80 reactive fragments were screened in two cell lines identifying >400 ligand-protein interactions. Hits were validated through concentration-response experiments and the platform was utilised for hit expansion and live cell experiments. This label-free platform represents a significant step forward in high-throughput proteomics to evaluate ligandability of cysteines across the human proteome.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.25.605137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge. We report a versatile, label-free quantification proteomics platform for competitive profiling of cysteine-reactive fragments against the native proteome. This high-throughput platform combines SP4 plate-based sample preparation with rapid chromatographic gradients. Data-independent acquisition performed on a Bruker timsTOF Pro 2 consistently identified ~23,000 cysteine sites per run, with a total of ~32,000 cysteine sites profiled in HEK293T and Jurkat lysate. Crucially, this depth in cysteinome coverage is met with high data completeness, enabling robust identification of liganded proteins. In this study, 80 reactive fragments were screened in two cell lines identifying >400 ligand-protein interactions. Hits were validated through concentration-response experiments and the platform was utilised for hit expansion and live cell experiments. This label-free platform represents a significant step forward in high-throughput proteomics to evaluate ligandability of cysteines across the human proteome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用无标记化学蛋白质组学对半胱氨酸反应片段进行可靠的蛋白质组分析
确定人类蛋白质的药理探针是加速发现新疗法的关键机会。扩大可配体蛋白质组的高含量筛选方法为加快发现研究蛋白质功能的新型化学探针提供了可能。通过化学蛋白质组学筛选反应性片段库为配体发现提供了一种引人注目的方法,然而,优化样品通量、蛋白质组深度和数据可重复性仍然是一个关键挑战。我们报告了一种多功能、无标记的定量蛋白质组学平台,用于对半胱氨酸反应片段与原生蛋白质组进行竞争性分析。这种高通量平台将基于 SP4 板的样品制备与快速色谱梯度相结合。在布鲁克 timsTOF Pro 2 上进行的独立于数据的采集每次运行可持续鉴定约 23,000 个半胱氨酸位点,在 HEK293T 和 Jurkat 裂解液中总共分析了约 32,000 个半胱氨酸位点。最重要的是,这种深度的半胱氨酸基因组覆盖率具有很高的数据完整性,能够对配体蛋白进行可靠的鉴定。在这项研究中,在两种细胞系中筛选了 80 个反应片段,确定了 400 种配体-蛋白质相互作用。通过浓度反应实验验证了命中,并利用该平台进行了命中扩展和活细胞实验。这个无标记平台代表了高通量蛋白质组学在评估整个人类蛋白质组中半胱氨酸配体性方面迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Cytokine Networks in Ulcerative Colitis to Identify Pathogenic Mechanisms and Therapeutic Targets High-content microscopy and machine learning characterize a cell morphology signature of NF1 genotype in Schwann cells Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism Sequential design of single-cell experiments to identify discrete stochastic models for gene expression. Environment-mediated interactions cause an externalized and collective memory in microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1