{"title":"3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide","authors":"Mahshid Mokhtarnejad, Narges Mokhtarinori, Erick L. Ribeiro, Saeed Kamali, Sheng Dai, Dibyunde Mukherjee, Bamin Khomami","doi":"10.1002/admt.202400151","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors (SCs) have the unique ability to rapidly recharge while providing substantial power output. Metal-organic frameworks (MOFs) are emerging as promising electrode materials for SCs due to their high porosity, ease of synthesis, tunable pore size distribution, and exceptional structural adaptability. This study presents a facile and cost-effective method, namely, laser ablation synthesis in solution (LASiS), for the synthesis of bimetallic MOFs composited with reduced graphene oxide (rGO), namely, ZnCo bi-MOF-rGO hybrid nanocomposite (HNC). Comprehensive analyses demonstrate that ZnCo bi-MOF-rGO has a high specific capacitance of 1092 F g<sup>−1</sup> at 1.0 A g<sup>−1</sup> in a 0.5 M Na<sub>3</sub>SO<sub>4</sub> electrolyte. In addition, these bi-MOF-rGO composites have been successfully integrated with appropriate solvents, viscosity modifiers, in-house synthesized porous carbon (PC), commercially available graphene, and binders into an active layer ink material for the development of high-performance 3D printed SCs via sequential inkjet printing. To that end, the way has been paved for the incorporation of this class of material into energy storage applications, particularly in the fabrication of high-performance printed electronics using laser-induced materials.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400151","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors (SCs) have the unique ability to rapidly recharge while providing substantial power output. Metal-organic frameworks (MOFs) are emerging as promising electrode materials for SCs due to their high porosity, ease of synthesis, tunable pore size distribution, and exceptional structural adaptability. This study presents a facile and cost-effective method, namely, laser ablation synthesis in solution (LASiS), for the synthesis of bimetallic MOFs composited with reduced graphene oxide (rGO), namely, ZnCo bi-MOF-rGO hybrid nanocomposite (HNC). Comprehensive analyses demonstrate that ZnCo bi-MOF-rGO has a high specific capacitance of 1092 F g−1 at 1.0 A g−1 in a 0.5 M Na3SO4 electrolyte. In addition, these bi-MOF-rGO composites have been successfully integrated with appropriate solvents, viscosity modifiers, in-house synthesized porous carbon (PC), commercially available graphene, and binders into an active layer ink material for the development of high-performance 3D printed SCs via sequential inkjet printing. To that end, the way has been paved for the incorporation of this class of material into energy storage applications, particularly in the fabrication of high-performance printed electronics using laser-induced materials.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.