3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-25 DOI:10.1002/admt.202400151
Mahshid Mokhtarnejad, Narges Mokhtarinori, Erick L. Ribeiro, Saeed Kamali, Sheng Dai, Dibyunde Mukherjee, Bamin Khomami
{"title":"3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide","authors":"Mahshid Mokhtarnejad,&nbsp;Narges Mokhtarinori,&nbsp;Erick L. Ribeiro,&nbsp;Saeed Kamali,&nbsp;Sheng Dai,&nbsp;Dibyunde Mukherjee,&nbsp;Bamin Khomami","doi":"10.1002/admt.202400151","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors (SCs) have the unique ability to rapidly recharge while providing substantial power output. Metal-organic frameworks (MOFs) are emerging as promising electrode materials for SCs due to their high porosity, ease of synthesis, tunable pore size distribution, and exceptional structural adaptability. This study presents a facile and cost-effective method, namely, laser ablation synthesis in solution (LASiS), for the synthesis of bimetallic MOFs composited with reduced graphene oxide (rGO), namely, ZnCo bi-MOF-rGO hybrid nanocomposite (HNC). Comprehensive analyses demonstrate that ZnCo bi-MOF-rGO has a high specific capacitance of 1092 F g<sup>−1</sup> at 1.0 A g<sup>−1</sup> in a 0.5 M Na<sub>3</sub>SO<sub>4</sub> electrolyte. In addition, these bi-MOF-rGO composites have been successfully integrated with appropriate solvents, viscosity modifiers, in-house synthesized porous carbon (PC), commercially available graphene, and binders into an active layer ink material for the development of high-performance 3D printed SCs via sequential inkjet printing. To that end, the way has been paved for the incorporation of this class of material into energy storage applications, particularly in the fabrication of high-performance printed electronics using laser-induced materials.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400151","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors (SCs) have the unique ability to rapidly recharge while providing substantial power output. Metal-organic frameworks (MOFs) are emerging as promising electrode materials for SCs due to their high porosity, ease of synthesis, tunable pore size distribution, and exceptional structural adaptability. This study presents a facile and cost-effective method, namely, laser ablation synthesis in solution (LASiS), for the synthesis of bimetallic MOFs composited with reduced graphene oxide (rGO), namely, ZnCo bi-MOF-rGO hybrid nanocomposite (HNC). Comprehensive analyses demonstrate that ZnCo bi-MOF-rGO has a high specific capacitance of 1092 F g−1 at 1.0 A g−1 in a 0.5 M Na3SO4 electrolyte. In addition, these bi-MOF-rGO composites have been successfully integrated with appropriate solvents, viscosity modifiers, in-house synthesized porous carbon (PC), commercially available graphene, and binders into an active layer ink material for the development of high-performance 3D printed SCs via sequential inkjet printing. To that end, the way has been paved for the incorporation of this class of material into energy storage applications, particularly in the fabrication of high-performance printed electronics using laser-induced materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光衍生的双金属 Co/Zn 金属有机框架和氧化石墨烯分层纳米复合材料的 3D 打印超级电容器
超级电容器(SC)具有快速充电的独特能力,同时还能提供巨大的功率输出。金属有机框架(MOFs)具有孔隙率高、易于合成、孔径分布可调以及结构适应性强等特点,正在成为具有发展前景的超级电容器电极材料。本研究提出了一种简便且经济有效的方法,即溶液中激光烧蚀合成法(LASiS),用于合成与还原氧化石墨烯(rGO)复合的双金属 MOF,即 ZnCo 双 MOF-rGO 混合纳米复合材料(HNC)。综合分析表明,在 0.5 M Na3SO4 电解液中,ZnCo 双MOF-rGO 在 1.0 A g-1 的条件下具有 1092 F g-1 的高比电容。此外,这些双MOF-rGO 复合材料已成功地与适当的溶剂、粘度调节剂、内部合成的多孔碳 (PC)、市售石墨烯和粘合剂整合成活性层墨水材料,用于通过顺序喷墨打印开发高性能 3D 打印 SC。为此,我们已经为将这一类材料纳入储能应用,特别是利用激光诱导材料制造高性能印刷电子器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1