{"title":"Interference aided finite resonant response in an undamped forced oscillator","authors":"Shihabul Haque and Jayanta K Bhattacharjee","doi":"10.1088/1751-8121/ad6412","DOIUrl":null,"url":null,"abstract":"We apply perturbative techniques to a driven undamped sinusoidal oscillator at resonance. The angular displacement, θ, obeys the dynamics . The linearized approximation gives a divergent response (at long times) but the nonlinear terms make the response finite. We address the nonlinearity-induced finiteness in two ways by separately treating the short and long time scales. At long times, we use the traditional perturbative techniques to extract two drive dependent behaviours—one, the amplitude of oscillation scales as and, two, the time period of the slow mode varies as . For the early time behaviour, on the other hand, we devise an alternate perturbative expansion where the successive terms get larger with the order of evaluation but have alternating signs. The alternating signs (phase differences) between these terms leads to adestructive interference like effect. A careful consideration of this destructive interference like effect between successive terms leads to a finite response which describes the initial behaviour of the amplitude of the response reasonably correctly. We further note that for larger drive values, the system seems to undergo a first order transitional behaviour with a sudden jump in the largest Lyapunov exponent","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6412","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We apply perturbative techniques to a driven undamped sinusoidal oscillator at resonance. The angular displacement, θ, obeys the dynamics . The linearized approximation gives a divergent response (at long times) but the nonlinear terms make the response finite. We address the nonlinearity-induced finiteness in two ways by separately treating the short and long time scales. At long times, we use the traditional perturbative techniques to extract two drive dependent behaviours—one, the amplitude of oscillation scales as and, two, the time period of the slow mode varies as . For the early time behaviour, on the other hand, we devise an alternate perturbative expansion where the successive terms get larger with the order of evaluation but have alternating signs. The alternating signs (phase differences) between these terms leads to adestructive interference like effect. A careful consideration of this destructive interference like effect between successive terms leads to a finite response which describes the initial behaviour of the amplitude of the response reasonably correctly. We further note that for larger drive values, the system seems to undergo a first order transitional behaviour with a sudden jump in the largest Lyapunov exponent
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.