High-Density Dual-Structure Single-Atom Pt Electrocatalyst for Efficient Hydrogen Evolution and Multimodal Sensing.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-08-07 Epub Date: 2024-07-29 DOI:10.1021/acs.nanolett.4c02428
Tianshu Chu, Guiying Wang, Xiangyu Zhang, Yanyan Jia, Sheng Dai, Xinzhi Liu, Li Zhang, Xuan Yang, Bowei Zhang, Fu-Zhen Xuan
{"title":"High-Density Dual-Structure Single-Atom Pt Electrocatalyst for Efficient Hydrogen Evolution and Multimodal Sensing.","authors":"Tianshu Chu, Guiying Wang, Xiangyu Zhang, Yanyan Jia, Sheng Dai, Xinzhi Liu, Li Zhang, Xuan Yang, Bowei Zhang, Fu-Zhen Xuan","doi":"10.1021/acs.nanolett.4c02428","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report a high-density dual-structure single-atom catalyst (SAC) by creating a large number of vacancies of O and Ti in two-dimensional (2D) Ti<sub>3</sub>C<sub>2</sub> to immobilize Pt atoms (SA Pt-Ti<sub>3</sub>C<sub>2</sub>). The SA Pt-Ti<sub>3</sub>C<sub>2</sub> showed excellent performance toward the pH-universal electrochemical hydrogen evolution reaction (HER) and multimodal sensing. For HER catalysis, compared to the commercial 20 wt % Pt/C, the Pt mass activities of SA Pt-Ti<sub>3</sub>C<sub>2</sub> at the overpotentials of ∼30 and 110 mV in acid and alkaline media are 45 and 34 times higher, respectively. More importantly, during the alkaline HER process, an interesting synergetic effect between Pt-C and Pt-Ti sites that dominated the Volmer and Heyrovsky steps, respectively, was revealed. Moreover, the SA Pt-Ti<sub>3</sub>C<sub>2</sub> catalyst exhibited high sensitivity (0.62-2.65 μA μM<sup>-1</sup>) and fast response properties for the multimodal identifications of ascorbic acid, dopamine, uric acid, and nitric oxide under the assistance of machine learning.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9666-9674"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02428","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report a high-density dual-structure single-atom catalyst (SAC) by creating a large number of vacancies of O and Ti in two-dimensional (2D) Ti3C2 to immobilize Pt atoms (SA Pt-Ti3C2). The SA Pt-Ti3C2 showed excellent performance toward the pH-universal electrochemical hydrogen evolution reaction (HER) and multimodal sensing. For HER catalysis, compared to the commercial 20 wt % Pt/C, the Pt mass activities of SA Pt-Ti3C2 at the overpotentials of ∼30 and 110 mV in acid and alkaline media are 45 and 34 times higher, respectively. More importantly, during the alkaline HER process, an interesting synergetic effect between Pt-C and Pt-Ti sites that dominated the Volmer and Heyrovsky steps, respectively, was revealed. Moreover, the SA Pt-Ti3C2 catalyst exhibited high sensitivity (0.62-2.65 μA μM-1) and fast response properties for the multimodal identifications of ascorbic acid, dopamine, uric acid, and nitric oxide under the assistance of machine learning.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效氢气进化和多模式传感的高密度双结构单原子铂电催化剂
在此,我们报告了一种高密度双结构单原子催化剂(SAC),它通过在二维(2D)Ti3C2 中产生大量 O 和 Ti 空位来固定铂原子(SA Pt-Ti3C2)。SA Pt-Ti3C2 在 pH 值通用的电化学氢进化反应(HER)和多模态传感方面表现出卓越的性能。在氢进化反应催化方面,与 20 wt % 的商用 Pt/C 相比,SA Pt-Ti3C2 在酸性和碱性介质中的过电位分别为 30 mV 和 110 mV 时的铂质量活性分别高出 45 倍和 34 倍。更重要的是,在碱性 HER 过程中,发现了 Pt-C 和 Pt-Ti 位点之间有趣的协同效应,它们分别主导了 Volmer 和 Heyrovsky 步骤。此外,在机器学习的帮助下,SA Pt-Ti3C2 催化剂在抗坏血酸、多巴胺、尿酸和一氧化氮的多模式识别中表现出了高灵敏度(0.62-2.65 μA μM-1)和快速响应特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Quadrupolar Resonance Spectroscopy of Individual Nuclei Using a Room-Temperature Quantum Sensor Novel Thermoplastic Polyurethanes Enable Biaxially Stretchable Conductor for Supercapacitors with High Areal Capacitance Ultrafast Charge Transfer in Lithium-Ion and Water-Intercalated MoS2/WS2 Heterostructures Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS2 Specific Influences of Trap States with Distinct Spatial and Energetic Distributions on Ion Migration Dynamics in Metal Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1