{"title":"Discovery and evolution of [4 + 2] cyclases","authors":"Jiawang Liu, Youcai Hu","doi":"10.1016/j.cbpa.2024.102504","DOIUrl":null,"url":null,"abstract":"<div><p>[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co–crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000802","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co–crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.