Boyu Zhao , Jing Luo , Hui Wang , Yuanxin Li , Dong Li , Xiaolin Bi
{"title":"In vivo RNAi screening identifies multiple deubiquitinases required for the maintenance of intestinal homeostasis in Drosophila","authors":"Boyu Zhao , Jing Luo , Hui Wang , Yuanxin Li , Dong Li , Xiaolin Bi","doi":"10.1016/j.ibmb.2024.104162","DOIUrl":null,"url":null,"abstract":"<div><p>Deubiquitinases (DUBs) are essential for the maintenance of protein homeostasis and assembly of proteins into functional complexes. Despite growing interest in DUBs biological functions, the roles of DUBs in regulating intestinal stem cells (ISCs) and gut homeostasis remain largely unknown. Here, we perform an <em>in vivo</em> RNAi screen through induced knock-down of DUBs expression in adult midgut ISCs and enteroblasts (EBs) to identify DUB regulators of intestinal homeostasis in <em>Drosophila</em>. We screen 43 DUBs and identify 8 DUBs that are required for ISCs homeostasis. Knocking-down of <em>usp1</em>, <em>CG7857</em>, <em>usp5</em>, <em>rpn8, usp10</em> and <em>csn5</em> decreases the number of ISCs/EBs, while knocking-down of <em>CG4968</em> and <em>usp8</em> increases the number of ISCs/EBs. Moreover, knock-down of <em>usp1</em>, <em>CG4968</em>, <em>CG7857</em>, or <em>rpn8</em> in ISCs/EBs disrupts the intestinal barrier integrity and shortens the lifespan, indicating the requirement of these DUBs for the maintenance of gut homeostasis. Furthermore, we provide evidences that USP1 mediates ISC lineage differentiation via modulating the Notch signaling activity. Our study identifies, for the first time, the deubiquitinases required for the maintenance of intestinal homeostasis in <em>Drosophila</em>, and provide new insights into the functional links between the DUBs and intestinal homeostasis.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"172 ","pages":"Article 104162"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824000936","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deubiquitinases (DUBs) are essential for the maintenance of protein homeostasis and assembly of proteins into functional complexes. Despite growing interest in DUBs biological functions, the roles of DUBs in regulating intestinal stem cells (ISCs) and gut homeostasis remain largely unknown. Here, we perform an in vivo RNAi screen through induced knock-down of DUBs expression in adult midgut ISCs and enteroblasts (EBs) to identify DUB regulators of intestinal homeostasis in Drosophila. We screen 43 DUBs and identify 8 DUBs that are required for ISCs homeostasis. Knocking-down of usp1, CG7857, usp5, rpn8, usp10 and csn5 decreases the number of ISCs/EBs, while knocking-down of CG4968 and usp8 increases the number of ISCs/EBs. Moreover, knock-down of usp1, CG4968, CG7857, or rpn8 in ISCs/EBs disrupts the intestinal barrier integrity and shortens the lifespan, indicating the requirement of these DUBs for the maintenance of gut homeostasis. Furthermore, we provide evidences that USP1 mediates ISC lineage differentiation via modulating the Notch signaling activity. Our study identifies, for the first time, the deubiquitinases required for the maintenance of intestinal homeostasis in Drosophila, and provide new insights into the functional links between the DUBs and intestinal homeostasis.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.