Xu Han , Ali Zhang , Pan Wang , Honghao Bi , Kehan Ren , Ermin Li , Ximing Yang , Inci Aydemir , Kara Tao , Jeffrey Lin , Sarki A. Abdulkadir , Jing Yang , Peng Ji
{"title":"Pleckstrin-2 Mediates the Activation of AKT in Prostate Cancer and Is Repressed by Androgen Receptor","authors":"Xu Han , Ali Zhang , Pan Wang , Honghao Bi , Kehan Ren , Ermin Li , Ximing Yang , Inci Aydemir , Kara Tao , Jeffrey Lin , Sarki A. Abdulkadir , Jing Yang , Peng Ji","doi":"10.1016/j.ajpath.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in <em>Pten</em> prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells <em>in vitro</em>. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed <em>PLEK2</em> through binding to the <em>PLEK2</em> promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.</div></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"194 10","pages":"Pages 1986-1996"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024002463","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in Pten prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells in vitro. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed PLEK2 through binding to the PLEK2 promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.