Farley Connelly, Robin D Johnsson, Raoul A Mulder, Michelle L Hall, John A Lesku
{"title":"Experimental playback of urban noise does not affect cognitive performance in captive Australian magpies.","authors":"Farley Connelly, Robin D Johnsson, Raoul A Mulder, Michelle L Hall, John A Lesku","doi":"10.1242/bio.060535","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060535","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.