Proteasome activity inhibition mediates endoplasmic reticulum stress-apoptosis in triptolide/lipopolysaccharide-induced hepatotoxicity.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2024-07-29 DOI:10.1007/s10565-024-09903-3
Ruohan Cheng, Yihan Jiang, Yue Zhang, Mohammed Ismail, Luyong Zhang, Zhenzhou Jiang, Qinwei Yu
{"title":"Proteasome activity inhibition mediates endoplasmic reticulum stress-apoptosis in triptolide/lipopolysaccharide-induced hepatotoxicity.","authors":"Ruohan Cheng, Yihan Jiang, Yue Zhang, Mohammed Ismail, Luyong Zhang, Zhenzhou Jiang, Qinwei Yu","doi":"10.1007/s10565-024-09903-3","DOIUrl":null,"url":null,"abstract":"<p><p>Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"60"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09903-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白酶体活性抑制在三苯氧胺/脂多糖诱导的肝毒性中介导内质网应激-凋亡。
雷公藤内酯(Triptolide,TP)是中药雷公藤(Tripterygium wilfordii Hook. F. TWHF)的一种主要有毒活性成分。F.(TWHF),具有多种治疗生物活性。在各种毒性作用中,三七皂苷的肝毒性值得高度重视。此前,我们的研究小组提出了 TP 相关肝毒性的新观点:脂多糖(LPS)刺激下的肝超敏反应。然而,TP/LPS 诱导肝脏超敏反应的机制仍不清楚。本研究从抑制蛋白酶体活性、激活与内质网应激(ERS)相关的细胞凋亡和活性氧(ROS)积累的角度研究了 TP/LPS 诱导肝脏超敏反应的机制。我们的研究结果表明,常见的 ROS 抑制剂 N-乙酰半胱氨酸(NAC)可降低与 FLIP 增强相关的裂解 Caspase-3 和裂解 PARP 的表达。此外,ERS抑制剂4-苯基丁酸(4-PBA)能够通过降低ERS相关凋亡蛋白(GRP78、p-eIF2α/eIF2α、ATF4、CHOP、裂解的caspase-3和裂解的PARP)的表达和ROS水平减轻TP/LPS诱导的肝毒性,其中ATF4是不可或缺的介质。此外,蛋白酶体活性抑制剂 MG-132 进一步加剧了 ERS 相关的细胞凋亡,这表明蛋白酶体活性的抑制在 TP/LPS 相关肝损伤中也起着重要作用。综上所述,我们认为 TP/LPS 可能通过抑制蛋白酶体的活性并通过 ATF4 增加 ROS 的产生,从而上调 ERS 相关细胞凋亡的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
Advancing gastric cancer treatment: nanotechnology innovations and future prospects. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Correction to: Activation of lipophagy ameliorates cadmium‑induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas. GRK2 mediates cisplatin-induced acute liver injury via the modulation of NOX4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1