{"title":"One-step N-Terminomics Based on Isolation of Protein N-Terminal Peptides From LysargiNase Digests by Tip-Based Strong Cation Exchange Chromatography.","authors":"Kazuya Morikawa, Hiroshi Nishida, Koshi Imami, Yasushi Ishihama","doi":"10.1016/j.mcpro.2024.100820","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a one-step isolation method for protein N-terminal peptides from LysargiNase digests by pipette tip-based strong cation exchange (SCX) chromatography. This CHAMP-N (CHromatographic AMplification of Protein N-terminal peptides) method using disposable and parallel-processable SCX tips instead of conventional HPLC SCX columns facilitates simple, sensitive, reproducible, and high-throughput N-terminomic profiling without sacrificing the high identification numbers and selectivity achieved by the HPLC-based method. By applying the CHAMP-N method to HEK293T cells, we identified novel cleavage sites for signal and transit peptides and non-canonical translation initiation sites. Finally, for proteome-wide terminomics, we present a simple and comprehensive N- and C-terminomics platform employing three different tip-based approaches, including CHAMP-N, in which protease digestion and one-step isolation by tip LC are commonly used to achieve complementary terminome coverages.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100820"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100820","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a one-step isolation method for protein N-terminal peptides from LysargiNase digests by pipette tip-based strong cation exchange (SCX) chromatography. This CHAMP-N (CHromatographic AMplification of Protein N-terminal peptides) method using disposable and parallel-processable SCX tips instead of conventional HPLC SCX columns facilitates simple, sensitive, reproducible, and high-throughput N-terminomic profiling without sacrificing the high identification numbers and selectivity achieved by the HPLC-based method. By applying the CHAMP-N method to HEK293T cells, we identified novel cleavage sites for signal and transit peptides and non-canonical translation initiation sites. Finally, for proteome-wide terminomics, we present a simple and comprehensive N- and C-terminomics platform employing three different tip-based approaches, including CHAMP-N, in which protease digestion and one-step isolation by tip LC are commonly used to achieve complementary terminome coverages.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes