Jae-Hwan Jo , Claudine Uwamahoro , Seung-Ik Jang , Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Dae-Hyun Kim , Jun Koo Yi , Dong Yep Oh , Jae Jung Ha , Woo-Sung Kwon
{"title":"Ethylene oxide suppresses boar sperm function during capacitation","authors":"Jae-Hwan Jo , Claudine Uwamahoro , Seung-Ik Jang , Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Dae-Hyun Kim , Jun Koo Yi , Dong Yep Oh , Jae Jung Ha , Woo-Sung Kwon","doi":"10.1016/j.reprotox.2024.108678","DOIUrl":null,"url":null,"abstract":"<div><p>Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.</p></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"129 ","pages":"Article 108678"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089062382400145X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.