Rasoul Abedi, Nasser Fatouraee, Mahdi Bostanshirin, Navid Arjmand, Hasan Ghandhari
{"title":"Prediction of Fusion Rod Curvature Angles in Posterior Scoliosis Correction Using Artificial Intelligence.","authors":"Rasoul Abedi, Nasser Fatouraee, Mahdi Bostanshirin, Navid Arjmand, Hasan Ghandhari","doi":"10.22038/ABJS.2024.76701.3545","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to estimate post-operative rod angles in both concave and convex sides of scoliosis curvature in patients who had undergone posterior surgery, using neural networks and support vector machine (SVM) algorithms.</p><p><strong>Methods: </strong>Radiographs of 72 scoliotic individuals were obtained to predict post-operative rod angles at all fusion levels (all spinal joints fused by rods). Pre-operative radiographical indices and pre-operatively resolved net joint moments of the apical vertebrae were employed as inputs for neural networks and SVM with biomechanical modeling using inverse dynamics analysis. Various group combinations were considered as inputs, based on the number of pre-operative angles and moments. Rod angles on both the concave and convex sides of the Cobb angle were considered as outputs. To assess the outcomes, root mean square errors (RMSEs) were evaluated between actual and predicted rod angles.</p><p><strong>Results: </strong>Among eight groups with various combinations of radiographical and biomechanical parameters (such as Cobb, kyphosis, and lordosis, as well as joint moments), RMSEs of groups 4 (with seven radiographical angles in each case, which is greater in quantity) and 5 (with four radiographical angles and one biomechanical moment in each case, which is the least possible number of inputs with both radiographical and biomechanical parameters) were minimum, particularly in prediction of the concave rod kyphosis angle (errors were 5.5° and 6.3° for groups 4 and 5, respectively). Rod lordosis angles had larger estimation errors than rod kyphosis ones.</p><p><strong>Conclusion: </strong>Neural networks and SVM can be effective techniques for the post-operative estimation of rod angles at all fusion levels to assist surgeons with rod bending procedures before actual surgery. However, since rod lordosis fusion levels vary widely across scoliosis cases, it is simpler to predict rod kyphosis angles, which is more essential for surgeons.</p>","PeriodicalId":46704,"journal":{"name":"Archives of Bone and Joint Surgery-ABJS","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Bone and Joint Surgery-ABJS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/ABJS.2024.76701.3545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to estimate post-operative rod angles in both concave and convex sides of scoliosis curvature in patients who had undergone posterior surgery, using neural networks and support vector machine (SVM) algorithms.
Methods: Radiographs of 72 scoliotic individuals were obtained to predict post-operative rod angles at all fusion levels (all spinal joints fused by rods). Pre-operative radiographical indices and pre-operatively resolved net joint moments of the apical vertebrae were employed as inputs for neural networks and SVM with biomechanical modeling using inverse dynamics analysis. Various group combinations were considered as inputs, based on the number of pre-operative angles and moments. Rod angles on both the concave and convex sides of the Cobb angle were considered as outputs. To assess the outcomes, root mean square errors (RMSEs) were evaluated between actual and predicted rod angles.
Results: Among eight groups with various combinations of radiographical and biomechanical parameters (such as Cobb, kyphosis, and lordosis, as well as joint moments), RMSEs of groups 4 (with seven radiographical angles in each case, which is greater in quantity) and 5 (with four radiographical angles and one biomechanical moment in each case, which is the least possible number of inputs with both radiographical and biomechanical parameters) were minimum, particularly in prediction of the concave rod kyphosis angle (errors were 5.5° and 6.3° for groups 4 and 5, respectively). Rod lordosis angles had larger estimation errors than rod kyphosis ones.
Conclusion: Neural networks and SVM can be effective techniques for the post-operative estimation of rod angles at all fusion levels to assist surgeons with rod bending procedures before actual surgery. However, since rod lordosis fusion levels vary widely across scoliosis cases, it is simpler to predict rod kyphosis angles, which is more essential for surgeons.
期刊介绍:
The Archives of Bone and Joint Surgery (ABJS) aims to encourage a better understanding of all aspects of Orthopedic Sciences. The journal accepts scientific papers including original research, review article, short communication, case report, and letter to the editor in all fields of bone, joint, musculoskeletal surgery and related researches. The Archives of Bone and Joint Surgery (ABJS) will publish papers in all aspects of today`s modern orthopedic sciences including: Arthroscopy, Arthroplasty, Sport Medicine, Reconstruction, Hand and Upper Extremity, Pediatric Orthopedics, Spine, Trauma, Foot and Ankle, Tumor, Joint Rheumatic Disease, Skeletal Imaging, Orthopedic Physical Therapy, Rehabilitation, Orthopedic Basic Sciences (Biomechanics, Biotechnology, Biomaterial..).