Leening P Liu, Rizza Pua, Michael Dieckmeyer, Nadav Shapira, Pooyan Sahbaee, Grace J Gang, Harold I Litt, Peter B Noël
{"title":"Impact of patient habitus and acquisition protocol on iodine quantification in dual-source photon-counting computed tomography.","authors":"Leening P Liu, Rizza Pua, Michael Dieckmeyer, Nadav Shapira, Pooyan Sahbaee, Grace J Gang, Harold I Litt, Peter B Noël","doi":"10.1117/1.JMI.11.S1.S12806","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Evaluation of iodine quantification accuracy with varying iterative reconstruction level, patient habitus, and acquisition mode on a first-generation dual-source photon-counting computed tomography (PCCT) system.</p><p><strong>Approach: </strong>A multi-energy CT phantom with and without its extension ring equipped with various iodine inserts (0.2 to 15.0 mg/ml) was scanned over a range of radiation dose levels ( <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> 0.5 to 15.0 mGy) using two tube voltages (120, 140 kVp) and two different source modes (single-, dual-source). To assess the agreement between nominal and measured iodine concentrations, iodine density maps at different iterative reconstruction levels were utilized to calculate root mean square error (RMSE) and generate Bland-Altman plots by grouping radiation dose levels (ultra-low: <math><mrow><mo><</mo> <mn>1.5</mn></mrow> </math> ; low: 1.5 to 5; medium: 5 to 15 mGy) and iodine concentrations (low: <math><mrow><mo><</mo> <mn>5</mn></mrow> </math> ; high: 5 to 15 mg/mL).</p><p><strong>Results: </strong>Overall, quantification of iodine concentrations was accurate and reliable even at ultra-low radiation dose levels. RMSE ranged from 0.25 to 0.37, 0.20 to 0.38, and 0.25 to 0.37 mg/ml for ultra-low, low, and medium radiation dose levels, respectively. Similarly, RMSE was stable at 0.31, 0.28, 0.33, and 0.30 mg/ml for tube voltage and source mode combinations. Ultimately, the accuracy of iodine quantification was higher for the phantom without an extension ring (RMSE 0.21 mg/mL) and did not vary across different levels of iterative reconstruction.</p><p><strong>Conclusions: </strong>The first-generation PCCT allows for accurate iodine quantification over a wide range of iodine concentrations and radiation dose levels. Stable accuracy across iterative reconstruction levels may allow further radiation exposure reductions without affecting quantitative results.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 Suppl 1","pages":"S12806"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.S1.S12806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Evaluation of iodine quantification accuracy with varying iterative reconstruction level, patient habitus, and acquisition mode on a first-generation dual-source photon-counting computed tomography (PCCT) system.
Approach: A multi-energy CT phantom with and without its extension ring equipped with various iodine inserts (0.2 to 15.0 mg/ml) was scanned over a range of radiation dose levels ( 0.5 to 15.0 mGy) using two tube voltages (120, 140 kVp) and two different source modes (single-, dual-source). To assess the agreement between nominal and measured iodine concentrations, iodine density maps at different iterative reconstruction levels were utilized to calculate root mean square error (RMSE) and generate Bland-Altman plots by grouping radiation dose levels (ultra-low: ; low: 1.5 to 5; medium: 5 to 15 mGy) and iodine concentrations (low: ; high: 5 to 15 mg/mL).
Results: Overall, quantification of iodine concentrations was accurate and reliable even at ultra-low radiation dose levels. RMSE ranged from 0.25 to 0.37, 0.20 to 0.38, and 0.25 to 0.37 mg/ml for ultra-low, low, and medium radiation dose levels, respectively. Similarly, RMSE was stable at 0.31, 0.28, 0.33, and 0.30 mg/ml for tube voltage and source mode combinations. Ultimately, the accuracy of iodine quantification was higher for the phantom without an extension ring (RMSE 0.21 mg/mL) and did not vary across different levels of iterative reconstruction.
Conclusions: The first-generation PCCT allows for accurate iodine quantification over a wide range of iodine concentrations and radiation dose levels. Stable accuracy across iterative reconstruction levels may allow further radiation exposure reductions without affecting quantitative results.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.