Yen-Der Li, Michelle W. Ma, Muhammad Murtaza Hassan, Moritz Hunkeler, Mingxing Teng, Kedar Puvar, Justine C. Rutter, Ryan J. Lumpkin, Brittany Sandoval, Cyrus Y. Jin, Anna M. Schmoker, Scott B. Ficarro, Hakyung Cheong, Rebecca J. Metivier, Michelle Y. Wang, Shawn Xu, Woong Sub Byun, Brian J. Groendyke, Inchul You, Logan H. Sigua, Isidoro Tavares, Charles Zou, Jonathan M. Tsai, Paul M. C. Park, Hojong Yoon, Felix C. Majewski, Haniya T. Sperling, Jarrod A. Marto, Jun Qi, Radosław P. Nowak, Katherine A. Donovan, Mikołaj Słabicki, Nathanael S. Gray, Eric S. Fischer, Benjamin L. Ebert
{"title":"Template-assisted covalent modification underlies activity of covalent molecular glues","authors":"Yen-Der Li, Michelle W. Ma, Muhammad Murtaza Hassan, Moritz Hunkeler, Mingxing Teng, Kedar Puvar, Justine C. Rutter, Ryan J. Lumpkin, Brittany Sandoval, Cyrus Y. Jin, Anna M. Schmoker, Scott B. Ficarro, Hakyung Cheong, Rebecca J. Metivier, Michelle Y. Wang, Shawn Xu, Woong Sub Byun, Brian J. Groendyke, Inchul You, Logan H. Sigua, Isidoro Tavares, Charles Zou, Jonathan M. Tsai, Paul M. C. Park, Hojong Yoon, Felix C. Majewski, Haniya T. Sperling, Jarrod A. Marto, Jun Qi, Radosław P. Nowak, Katherine A. Donovan, Mikołaj Słabicki, Nathanael S. Gray, Eric S. Fischer, Benjamin L. Ebert","doi":"10.1038/s41589-024-01668-4","DOIUrl":null,"url":null,"abstract":"<p>Molecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a <i>trans</i>-labeling covalent molecular glue mechanism, termed ‘template-assisted covalent modification’. We identified a new series of BRD4 molecular glue degraders that recruit CUL4<sup>DCAF16</sup> ligase to the second bromodomain of BRD4 (BRD4<sub>BD2</sub>). Through comprehensive biochemical, structural and mutagenesis analyses, we elucidated how pre-existing structural complementarity between DCAF16 and BRD4<sub>BD2</sub> serves as a template to optimally orient the degrader for covalent modification of DCAF16<sub>Cys58</sub>. This process stabilizes the formation of BRD4–degrader–DCAF16 ternary complex and facilitates BRD4 degradation. Supporting generalizability, we found that a subset of degraders also induces GAK–BRD4<sub>BD2</sub> interaction through <i>trans</i>-labeling of GAK. Together, our work establishes ‘template-assisted covalent modification’ as a mechanism for covalent molecular glues, which opens a new path to proximity-driven pharmacology.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01668-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed ‘template-assisted covalent modification’. We identified a new series of BRD4 molecular glue degraders that recruit CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). Through comprehensive biochemical, structural and mutagenesis analyses, we elucidated how pre-existing structural complementarity between DCAF16 and BRD4BD2 serves as a template to optimally orient the degrader for covalent modification of DCAF16Cys58. This process stabilizes the formation of BRD4–degrader–DCAF16 ternary complex and facilitates BRD4 degradation. Supporting generalizability, we found that a subset of degraders also induces GAK–BRD4BD2 interaction through trans-labeling of GAK. Together, our work establishes ‘template-assisted covalent modification’ as a mechanism for covalent molecular glues, which opens a new path to proximity-driven pharmacology.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.