Gokce Baysal Turkolmez, Zakaria El Hathat, Nachiappan Subramanian, Saravanan Kuppusamy, V. Raja Sreedharan
{"title":"Machine Learning Algorithms for Pricing End-of-Life Remanufactured Laptops","authors":"Gokce Baysal Turkolmez, Zakaria El Hathat, Nachiappan Subramanian, Saravanan Kuppusamy, V. Raja Sreedharan","doi":"10.1007/s10796-024-10515-9","DOIUrl":null,"url":null,"abstract":"<p>Due to the growing volume of e-waste in the world and its environmental impact, it is important to understand how to extend the useful life of electronic items. In this paper, we examine the remanufacturing process of end-of-life laptops for third-party remanufacturers and consider their pricing problem, which involves issues like a lack of reliable datasets, fluctuating costs of new components, and difficulties in benchmarking laptop prices, to name a few. We develop a unique approach that uses machine learning algorithms to help price remanufactured laptops. Our methodology involves a variety of techniques, which include an additive model, CART analysis, Random Forest, and Polynomial Regression. We consider depreciation and discount factors to account for the varying ages and conditions of laptops when estimating remanufactured laptop prices. Finally, we also compare our estimated prices to traditional prices. In summary, we leverage data-driven decision-making and develop a robust methodology for pricing remanufactured laptops to extend their lifespan.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"62 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10515-9","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the growing volume of e-waste in the world and its environmental impact, it is important to understand how to extend the useful life of electronic items. In this paper, we examine the remanufacturing process of end-of-life laptops for third-party remanufacturers and consider their pricing problem, which involves issues like a lack of reliable datasets, fluctuating costs of new components, and difficulties in benchmarking laptop prices, to name a few. We develop a unique approach that uses machine learning algorithms to help price remanufactured laptops. Our methodology involves a variety of techniques, which include an additive model, CART analysis, Random Forest, and Polynomial Regression. We consider depreciation and discount factors to account for the varying ages and conditions of laptops when estimating remanufactured laptop prices. Finally, we also compare our estimated prices to traditional prices. In summary, we leverage data-driven decision-making and develop a robust methodology for pricing remanufactured laptops to extend their lifespan.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.