Coupled Kite-to-Square Distortion Transition and Physical Properties in 2D Lead Halide Perovskite.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-08-08 Epub Date: 2024-07-30 DOI:10.1021/acs.jpclett.4c01371
Xiang-Bin Han
{"title":"Coupled Kite-to-Square Distortion Transition and Physical Properties in 2D Lead Halide Perovskite.","authors":"Xiang-Bin Han","doi":"10.1021/acs.jpclett.4c01371","DOIUrl":null,"url":null,"abstract":"<p><p>2D lead halide perovskites showcase diverse electrical and optoelectrical properties due to their adaptable structural distortion, which dictates the symmetry characteristics of the material. To accommodate the geometric shape of the cation, the inorganic layer of the 2D perovskite often undergoes specific distortions such as lead-halide bond length elongation/compression and lead atom displacement. The resultant distortion manifests as a quadrilateral shape formed by Pb atoms from four adjacent four octahedrons. The degree of distortion increases as the quadrilateral deviates further from a square shape and vice versa. This quadrilateral shape not only visually represents the magnitude of distortion but also confirms its direction. During the transition from kite to square distortion under external stimuli, the positions of the Pb atoms vividly illustrate the symmetry-breaking process, corresponding to a shift from high to low symmetry states. The electrical and optoelectronic properties, including ferroelectricity, pyroelectricity, piezoelectricity, nonlinear optical properties, and characteristics related to bulky photovoltaic effects, some of them exhibit direction dependence nature. This perspective employed a visible structural distortion approach to elucidate symmetry breaking and coupling distortion transitions with eight optoelectronic physical properties in 2D layered perovskite. We review recent research advancements and outline current challenges that help us to understand the structure-property relationship of 2D perovskite.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c01371","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

2D lead halide perovskites showcase diverse electrical and optoelectrical properties due to their adaptable structural distortion, which dictates the symmetry characteristics of the material. To accommodate the geometric shape of the cation, the inorganic layer of the 2D perovskite often undergoes specific distortions such as lead-halide bond length elongation/compression and lead atom displacement. The resultant distortion manifests as a quadrilateral shape formed by Pb atoms from four adjacent four octahedrons. The degree of distortion increases as the quadrilateral deviates further from a square shape and vice versa. This quadrilateral shape not only visually represents the magnitude of distortion but also confirms its direction. During the transition from kite to square distortion under external stimuli, the positions of the Pb atoms vividly illustrate the symmetry-breaking process, corresponding to a shift from high to low symmetry states. The electrical and optoelectronic properties, including ferroelectricity, pyroelectricity, piezoelectricity, nonlinear optical properties, and characteristics related to bulky photovoltaic effects, some of them exhibit direction dependence nature. This perspective employed a visible structural distortion approach to elucidate symmetry breaking and coupling distortion transitions with eight optoelectronic physical properties in 2D layered perovskite. We review recent research advancements and outline current challenges that help us to understand the structure-property relationship of 2D perovskite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维卤化铅过氧化物中的套件-方形耦合畸变和物理性质。
二维卤化铅包晶石具有多种电气和光电特性,这得益于其可适应的结构变形,这种变形决定了材料的对称特性。为了适应阳离子的几何形状,二维包晶体的无机层通常会发生特定的变形,如卤化铅键长度伸长/压缩和铅原子位移。由此产生的变形表现为由相邻四个八面体的铅原子形成的四边形。随着四边形进一步偏离正方形,变形程度也随之增加,反之亦然。这种四边形不仅直观地表示了变形的程度,而且还确认了变形的方向。在外部刺激下从风筝形畸变到正方形畸变的过程中,铅原子的位置生动地展示了对称性的破坏过程,相当于从高对称性状态到低对称性状态的转变。电学和光电特性,包括铁电性、热释电性、压电性、非线性光学特性以及与大体积光电效应相关的特性,其中一些表现出方向依赖性。本视角采用可见结构畸变的方法来阐明二维层状包晶的对称性破缺和耦合畸变转变与八种光电物理性质。我们回顾了最近的研究进展,并概述了当前的挑战,这些挑战有助于我们理解二维包晶的结构-性质关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
A Green Host-Guest Protocol to Improve Water Solubility of Fluorescent Dyes. Discovering the Potential of High Phonon Energy Hosts in the Field of Visible-to-Ultraviolet C Upconversion. Fermi Edge of Semimetallic Borophane Sheets and its Reduction by a Porous Structure. Linear-Decoupling Enables Accurate Speed and Accuracy Predictions for Copolymerization Processes. Oxygen Vacancy Activates the Second-Nearest-Neighbor Lattice Oxygen for Oxidation Reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1